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Abstract

A direct numerical simulation (DNS) is adapted to solve the Boussinesq equations of

motion using spectral methods. The DNS is used to reproduce the results of laboratory

experiments by Ghaemsaidi et al. (2016) showing the transmission and reflection of

internal waves from mixed layers in a vertically stratified fluid. The DNS is used to

analyze the vertical energy flux through several di↵erent vertical stratification profiles.

This work shows potential of being used to analyze the vertical propagation of internal

wave energy through stratification profiles similar to those found in the Arctic Ocean.

1 Introduction

The North Atlantic Current sends relatively warm and salty water into the Arctic

Ocean (Carmack et al., 1997; Wells and Wettlaufer, 2007). In most parts of the ocean,

water is less dense when warm than when cold, but the Arctic is cold enough so di↵erences

in temperature and salinity both have a significant e↵ect on density. Such waters are called

beta oceans to distinguish from the alpha oceans found in the tropics and mid-latitudes

(Carmack, 2007).

Water sent poleward from the Atlantic forms the Warm Atlantic Layer (WAL) as it

subducts under the less dense surface waters which enter the Arctic Ocean from rivers. The

WAL is centered around a depth of 300-500 m, just below the pycnocline where density

increases rapidly with depth (Wells and Wettlaufer, 2007). In the pycnocline, the strong

stratification is accompanied by layers on the order of 1 m thick having well defined and

homogenous temperature and salinity separated by sharp gradient interfaces (Sutherland,

2016; Shibley and Timmermans, 2019). These characteristic vertical stratification struc-

tures, seen in Figure 1, are called double-di↵usive staircases. Both the staircases and the

WAL are persistent and wide-spread features of the Arctic Ocean (Carmack et al., 1997;

Shibley and Timmermans, 2019).

Turner (2010) calculated that the WAL contains enough heat to completely melt the

Arctic sea ice cover within four years if allowed to rise to the surface. The strong stratifi-

cation of the pycnocline prevents the majority of heat transport up from the WAL which

is why sea ice can form over the Arctic Ocean’s basins (Fer, 2014; Carmack, 2007).

Arctic ice cover limits the energy transferred to the ocean from wind-driven shear and

increases the dissipation of internal waves (Fer, 2014). Sea ice in the Arctic has been

declining for decades (Comiso et al., 2008) and exposing more of the ocean’s surface can

1



Figure 1: (a) A typical density stratification profile in the Canadian Basin of the Arctic
Ocean (Rainville and Winsor, 2008). (b) A magnified section of the profile showing the
staircase structure. The red line is a 5 m bin-averaged smoothed density profile. (c) The
corresponding profile for the buoyancy frequency N(z). Reproduced from Figure 1 of
Ghaemsaidi et al. (2016).

lead to more wind-generated internal waves propagating deeper, causing vertical mixing

(Fer, 2014; Rainville et al., 2011).

As vertical mixing increases, heat from the WAL will more easily be transferred to

the surface leading to further ice loss which will allow more wind energy to transfer into

the ocean in a positive feedback loop (Turner, 2010). The continued loss of sea ice in

the Arctic will have major consequences for both the resident ecosystems and large scale

circulation (Comiso et al., 2008; Ghaemsaidi et al., 2016).

There is a body of previous work on the interactions between internal waves and double-

di↵usive staircases, but it is still unclear to what extent internal waves can penetrate such

stratification structures (Sutherland, 2016). In section 2 of this report, I adapt a direct

numerical simulation (DNS) using the Dedalus framework to model the propagation of

internal waves generated at the surface through a density stratified fluid. In section 3,

I use the DNS to reproduce the results of a laboratory experiment by Ghaemsaidi et al.

(2016) involving internal waves being sent through a fluid with one or two mixed layers. I

extend the DNS in section 4 to analyze the vertical energy flux through the single layer,

double layer, and constant stratification profiles. In section 5, I suggest extensions to this

project which could bring it closer to simulating internal wave and energy propagation in

the Arctic Ocean.
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2 Methods

2.1 The Boussinesq Equations of Motion

The code for this work uses the Dedalus framework for solving partial di↵erential

equations (Burns et al., 2019). I choose to adapt an example simulation run in two

dimensions to reduce the required computing time and memory resources. Because Coriolis

e↵ects were not present in the laboratory experiment from Ghaemsaidi et al. (2016) and

they are not essential to the dynamics of interest, I choose to neglect rotation. This DNS

is centered around solving the Boussinesq equations of motion for a vertically density-

stratified, non-rotating, nearly incompressible fluid in two dimensions:

r · ~v = 0 (1a)

Db

Dt
= r2b�N2(z)w (1b)

D~v

Dt
= ⌫r2~v �rp0 + bẑ (1c)

where ~v = (u,w) is velocity vector,  is molecular di↵usivity, and ⌫ is molecular viscosity.

The Boussinesq approximation considers density variations to be negligible unless they

e↵ect buoyancy forces because g is relatively large (Vallis, 2017; Sutherland, 2010). This is

a reasonable approximation for the ocean because density variations are small (Sutherland,

2010).

Equation (1a) is the continuity equation and states that the flow is non-divergent

(Lautrup, 2011). Equation (1b) is the equation of state, which is usually written in terms

of density or temperature (Winters et al., 2004; Lautrup, 2011). For a more convenient

form in terms of buoyancy, I define the total density to be

⇢(~x, t) = ⇢0 + ⇢(z) + �⇢(~x, t) (2)

where ⇢0 is a constant reference density, ⇢ is the background density profile, and �⇢

represents density fluctuations, which I consider to be small for this work (Vallis, 2017).
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Similarly, I define the total pressure as

p(~x, t) = p0 + p(z) + �p(~x, t) (3)

where I set the background pressure p0+p(z) in hydrostatic balance with ⇢0. Then I define

b = �g�⇢/⇢0 as the buoyancy (Vallis, 2017) and the background stratification frequency

N(z) as

N2(z) = � g

⇢0

@⇢

@z
. (4)

Equation (1c) is the momentum equation where I define p0 = �p/⇢0 as the normalized

pressure variations.

2.2 Dedalus Code

2.2.1 Domain and Bases

Dedalus is a framework built to use spectral methods to solve arbitrary systems of

di↵erential equations (Burns et al., 2019). It is primarily designed to study problems in

fluid dynamics and can be run in parallel using MPI. I choose to adapt an example from

the Dedalus development team which used similar equations in two dimensions. Because I

am primarily interested in vertical motion, I use a Chebyshev basis in the z direction. This

allows me to define non-constant coe�cients (NCC’s), such as the background stratification

N(z). For the horizontal direction, I use a Fourier basis which implicitly defines periodic

boundary conditions in x. For simplicity, I set the initial conditions of all the variables

to zero and use a two-stage, second-order, diagonally implicit Runga-Kutta time stepping

scheme with a constant dt = 0.125 seconds (Ascher et al., 1997).

Ideally, my domain would extend infinitely downward in z. Being limited to a finite

length, the downward propagating waves reflect o↵ the bottom boundary and propagate

upwards, creating interference. To mitigate this issue, I extend the vertical simulation

domain below where I am taking measurements. Because I am not interested in the flow

below that point, this extra bu↵er has a lower resolution.
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2.2.2 Boundary Conditions and Forcing

My problem contains three state variables; b, u, and w, which appear in first order

time derivatives, and one diagnostic variable; p0. I set periodic boundary conditions in

the x direction by using a Fourier basis and specify six Dirichlet boundary conditions in

the z direction. For the first three, I set the state variables equal to zero at the bottom

of the domain. At the top of the domain (ztop), I prescribe functions for the boundary

conditions on b, u, and w to force downward-propagating internal waves.

A polarization relation between the state variables can be found by linearizing the

equations of motion and seeking wave solutions in the form

exp [i(kxx+ kzz � !t)] (5)

where kx and kz are the horizontal and vertical wavenumbers and ! is the frequency of

the boundary forcing (Cushman-Roisin and Beckers, 2011). By assuming the coe�cient

for the buoyancy wave solution to be Âg, the polarization relation is

u = �Â
g!kz
N2kx

sin (kxx+ kzz � !t) (6a)

w = +Â
g!

N2
sin (kxx+ kzz � !t) (6b)

p0 = �Â
g!2kz
N2k2x

sin (kxx+ kzz � !t) (6c)

b = +Âg cos (kxx+ kzz � !t) (6d)

where Â is a non-dimensional forcing amplitude coe�cient, which is taken to be small for

this work (Cushman-Roisin and Beckers, 2011).

Because I set the initial conditions of all variables to zero, using (6) directly as the

top boundary forcing causes a transient oscillation that eventually dies out. To avoid this

transient, I apply a temporal ramp function

Rbf (t) =
1

2

✓
tanh


4t

nT
� 2

�
+ 1

◆
(7)

5



to each forcing amplitude in (6). T = 2⇡/! is the oscillation period and I set the ramp to

last n = 3 oscillation periods because it is long enough to make the transient oscillation

negligible but not long enough to make the simulation spin up time cumbersome.

2.2.3 Condition for Linearity

I am only interested in investigating linearly stable flows. Monitoring the Richardson

number Ri is one method because if Ri> 1/4, then linear stability is guaranteed (Kundu

et al., 2015). However, since Ri is proportional to N2 and I set N = 0 explicitly in sections

of the background profile, I choose to monitor a linear criterion Clin that comes from the

linearized horizontal momentum equation. Again assuming the form (5) for u and w, I

find the condition for linearity to be when:

Clin =
kxu+ kzw

!
<< 1 (8)

is satisfied everywhere in the flow. For all simulations in this work, Clin is on the order of

0.1 or smaller at all times.

2.3 Calculating Vertical Energy Flux

I am interested in finding the vertical energy flux through a horizontal surface at some

depth z. The change in kinetic energy per unit mass is

@Ek

@t
=

1

2

@|~v|2

@t
. (9)

I derive an expression for @Ek/@t by taking the dot product of the momentum equation

(1c) with ~v. After expanding the material derivative, this gives:

@Ek

@t
= ~v · @~v

@t
= �~v · (~v ·r)~v + ~v · D~v � ~v ·rp0 + ~v · bẑ (10)

where D is a dissipation operator in two dimensions

D = ⌫x
@2

@x2
+ ⌫z

@2

@z2
(11)
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where ⌫x and ⌫z are the horizontal and vertical kinematic viscosities, respectively.

The general procedure is to split each term into divergent and non-divergent terms.

Using the product rule, the viscous term can be written as

~v · D~v = ⌫x

"
@2Ek

@x2
�
✓
@~v

@x

◆2
#
+ ⌫z

"
@2Ek

@z2
�
✓
@~v

@x

◆2
#

(12)

which can be simplified to

~v · D~v = r · ~�⌫ � ✏ (13)

by defining the viscous flux vector

~�⌫ = ⌫x
@Ek

@x
x̂+ ⌫z

@Ek

@z
ẑ (14)

and the dissipation

✏ = ⌫x

✓
@~v

@x

◆2

+ ⌫z

✓
@~v

@z

◆2

. (15)

Following a similar procedure for the other terms and using the fact that the flow is

non-divergent, (10) can be written as

@Ek

@t
= �r ·

⇣
(Ek + p0)~v � ~�⌫

⌘
+ bw � ✏. (16)

From this I define the vertical energy flux

Fz = (Ek + P )~v · ẑ � ~�⌫ · ẑ = (Ek + p0)w � ⌫z
@Ek

@z
(17)

where the sign of Fz is defined so a negative energy flux corresponds to energy propagating

downwards. I choose a control volume that extends from the top boundary down to a depth

of interest and across the full x extent from xmin to xmax. Integrating Fz along x gives

Z xmax

xmin

Fzdx =< Fz(z, t) > (18)
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the vertical energy flux per unit mass at a certain time (t) across a horizontal boundary

at a certain depth (z).

Expanding Ek with (9) and |~v|2 = u2 + w2 then using the product rule puts vertical

energy flux in terms of u, w, p0, and ⌫z; values which are readily available in the code:

Fz =
1

2
(u2w + w3) + p0w � ⌫z

✓
u
@u

@z
+ w

@w

@z

◆
(19)

The three terms represent the vertical energy flux due to kinetic advection FKA, pressure

work FPW , and viscosity FV IS , respectively. The relative size of each term can be found

by substituting the polarization relation (6):

FKA =

 
Âg!

N2

!3
1

2

✓
k2z
k2x

+ 1

◆
sin 3(kxx+ kzz � !t) (20a)

FPW = �
 
Âg!

N2

!2
!kz
k2x

sin 2(kxx+ kzz � !t) (20b)

FV IS = �
 
Âg!

N2

!2

⌫zkz

✓
k2z
k2x

+ 1

◆
sin (kxx+ kzz � !t) cos (kxx+ kzz � !t) (20c)

The coe�cient of pressure work is the largest in magnitude. Pressure work scales with Â2

while kinetic advection scales with Â3 and Â is small. The viscous term will be small due

to the small magnitude of the viscosity coe�cient ⌫z. When integrating over an integer

number of horizontal wavelengths, the kinetic advection and viscous term will go to zero.

Therefore, I expect the total vertical energy flux per unit mass to be entirely due to

pressure work.

3 Validation with Experimental Results

3.1 Reproducing Experimental Conditions

Ghaemsaidi et al. (2016) performed a laboratory experiment to investigate the prop-

agation of internal waves through vertical stratification. The tank they used was 0.54 m

deep and 5.46 m long. However, the measurement domain was a 0.5 by 0.5 m area just to
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the right of the wave generator which was a cylinder extending in the y direction that os-

cillated in z with an amplitude of 7 mm (Ghaemsaidi et al., 2016). The tank had parabolic

ends to dissipate unwanted reflections from the boundaries. The domain I simulate is 1.5

by 1.5 m, but my measurement domain is centered in the horizontal and at the top of the

vertical domain, with the remaining 1 m below as a bu↵er for unwanted reflections.

The two di↵erent stratification profiles used by Ghaemsaidi et al. (2016) both had

constant stratifications of N1 = 0.95 rad s�1 above and N2 = 1.24 rad s�1 below the

mixed layers. Between those two constant stratifications were either one or two mixed

layers with N = 0. See Figure 2. I reproduce both the single and double layer profiles

using combinations of tanh functions in order to keep the profiles smooth and continuous.

I use the same value of viscosity, ⌫ = 10�6 m2s�1, as Ghaemsaidi et al. (2016) which

is the viscosity of pure water at 20�C. The di↵usivity () used was not specified, so I use

the corresponding value for pure water at 20�C:  = 1.4 ·10�7 m2s�1 (Kundu et al., 2015).

The oscillating frequencies used by Ghaemsaidi et al. (2016) in the scenarios I reproduce

(see Figure 2) were not specified. Following Foran (2017), who successfully reproduced the

simulation through a di↵erent means, I choose the frequencies ! = 0.67 s�1 and ! = 0.72

s�1 for the single and double mixed layer profiles, respectively.

Both Ghaemsaidi et al. (2016) and Foran (2017) used a characteristic total wavenumber

of k = 45 m�1 for the boundary forcing. Through trigonometry and the dispersion relation

of internal waves (Cushman-Roisin and Beckers, 2011):

✓ = cos�1(!/N1), kx = k cos (✓), kz = k sin (✓) (21)

this corresponds to an angle below the horizontal ✓1 = 45.1�, kx,1 = 31.7 m�1, and

kz,1 = 31.9 m�1 for the single layer and ✓2 = 40.7�, kx,2 = 34.1 m�1, and kz,2 = 29.4 m�1

for the double layer.

To simulate the wave generator, I apply a windowing function

Wbf (x) =
1

4
(tanh [s(x� xl)] + 1) (tanh [�s(x� xr)] + 1) (22)

to the top boundary forcing where s is the slope of the window’s sides, xl is the window’s
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left edge, and xr is the window’s right edge. I set s = 20 for a balance between edges too

steep to run the code e�ciently and edges too shallow to form well-defined wave beams. To

have the waves originate from the top left corner of the display domain, I set xl = ��x/2

and xr = �x/2 where �x = 2⇡/kx is the horizontal wavelength.

Setting the parameters as stated and applying both the ramp (7) and windowing (22)

to the top boundary forcing (6) creates an internal wave beam that propagates from the

top left towards the bottom right of my 0.5 by 0.5 m measurement domain.

Figure 2: The results of the single (top row) and double (bottom row) mixed layer ex-
periments run by Ghaemsaidi et al. (2016). (a,d) show the stratification profiles. (b,e)
show vertical velocity snapshots from laboratory experiments. (c,f) show vertical veloc-
ity snapshots of theoretical wave fields. Reproduced from Figure 5 of Ghaemsaidi et al.
(2016).

3.2 Comparison of Results

In both laboratory experiments and theoretical simulations, Ghaemsaidi et al. (2016)

saw the majority of the wave beam reflect o↵ the single layer and two distinct reflections

and transmissions for the double layer. See Figure 2. All of the major features were

successfully reproduced by Foran (2017) by recreating the stratification profiles as closely

as possible and tuning ! until the correct angle was reached.
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By following Foran (2017), I also successfully reproduce the major features of the

experiments by Ghaemsaidi et al. (2016). In Figure 3, the wave beam mostly reflects o↵

the single layer, with a small amount transmitted. In Figure 4, the wave beam has both

reflection and transmission from both mixed layers.

Figure 3: The stratification profile and a snapshot of the vertical velocity field for repro-
ducing the single layer experiment. Compare to Figure 2 b,c. This simulation was run
with ! = 0.67 s�1, Â = 2.3 · 10�4, and a resolution of 512⇥512. This snapshot was taken
after 8.371 periods.

Figure 4: The stratification profile and a snapshot of the vertical velocity field for repro-
ducing the single layer experiment. Compare to Figure 2 e,f. This simulation was run
with ! = 0.72 s�1, Â = 2.3 · 10�4, and a resolution of 512⇥512. This snapshot was taken
after 9.325 periods.

The magnitudes of the vertical velocity w di↵er between my results and those I am
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reproducing due to di↵erent normalization methods. Ghaemsaidi et al. (2016) normalizes

w by the “characteristic vertical velocity amplitude A!” where A = 7.07 mm is the

amplitude and ! is the frequency of the wave-generating cylinder’s oscillations. With no

physical displacement distance, I choose to normalize w by the coe�cient from (6b) the

polarization relation for vertical velocity: Âg!/N2.

The color bars for vertical velocity in Figures 3 and 4 are saturated to more clearly show

the transmission of the wave beams. While it is expected that the transmission magnitude

would be small, it is smaller still because of the relatively small value Â = 2.3 · 10�4.

Amplitudes any larger cause aliasing which crash the solver.

4 Measuring Vertical Energy Flux

4.1 Energy Flux for a Constant Stratification Profile

To test the code’s functionality to measure energy flux I use a profile with the constant

stratification of N = 1 s�1 so the waves forced from the boundary can propagate freely

through the domain. Therefore, I expect the vertical energy flux to be negative for all

points in time and across all depths. Energy propagates vertically at the vertical group

velocity

cgz =
@!

@kz
= � !kz

(k2x + k2z)
(23)

therefore I expect the energy flux to increase in magnitude at this rate for lower depths

(Cushman-Roisin and Beckers, 2011).

For measuring vertical energy flux, having well defined wave beams is not important.

This allows me to save on computational resources by removing the windowing function

on the boundary forcing and setting the horizontal simulation domain from 0 to 0.5 m. To

maintain a similar horizontal wavenumber to the above simulations and have an integer

number of wavelengths across the top boundary, I set the boundary forcing wavelength

equal to one third of the horizontal extent. I choose ✓ = 45� which results in kx = kz = 37.7

and ! = 0.707 s�1. With these parameters, I use (23) to predict a lag of approximately 6

oscillation periods between energy flux through the top and bottom boundaries.
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Figure 5: Energy flux for a constant stratification profile. The top panel shows the energy
flux across the z domain and across time. The red dotted line shows the vertical group
speed cgz. The bottom panel shows the energy flux through the top boundary z = 0 and
the bottom boundary z = �0.5 over time. This simulation had ! = 0.707 s�1, Â = 2 ·10�4

with a resolution of 512⇥512, and was run for 20 oscillation periods.

Figure 5 shows the vertical energy flux through constant stratification over 20 oscil-

lation periods. In the top panel, the red dashed line shows a slope corresponding to cgz.

This line is o↵set horizontally to accentuate how closely it matches the propagation of

energy. In the bottom panel, the lag between the top and bottom boundaries in energy

flux is close to the predicted 6 periods.

The ramp in the forcing function is clearly evident in the energy flux through the top

boundary. After approximately 3 periods, the top surface reaches a stead state. After a

lag of around 6 periods, the ramp is also evident in the bottom boundary. While there is a

small transient over the bottom boundary steady state, there is no evidence of interference
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of waves reflected from the bottom of the bu↵er in the simulated domain after 20 periods.

Figure 6: The 3 energy flux terms in (19) on the top boundary for a constant stratification
profile: kinetic advection (top), pressure work (middle), and viscous term (bottom). Note
the varying energy flux magnitudes between terms. This simulation had ! = 0.707 s�1,
Â = 2 · 10�4 with a resolution of 512⇥512, and was run for 20 oscillation periods.

Figure 6 shows plots of the three energy flux terms from (20) integrated across the top

boundary from the same simulation as Figure 5. Again, the ramp function over the first 3

periods is evident. Because the terms were integrated over 3 horizontal wavelengths �x, I

expect the only non-zero term to be pressure work. Reaching a steady state value around

2.3 · 10�13 Wm2/kg, the kinetic advection is small enough to be arguably negligable but

with a steady state value around �3.8·10�10 Wm2/kg, the viscous term is definitely higher

than expected. The pressure work reached a steady value around �2.3 · 10�8 Wm2/kg.

The value predicted by integrating (20b) from x = 0 to x = 3�x is �9.0 · 10�9 Wm2/kg.

The reason behind these discrepancies is unclear. However, the top boundary energy flux
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in Figure 5 is almost exactly the pressure work in Figure 6 as predicted.

4.2 Energy Flux for Single and Double Mixed Layer Profiles

Figure 7 shows the energy flux profiles along with the energy flux through the top and

bottom boundaries for the single and double layer stratification profiles shown in Figures

3 and 4. Because the boundary forcing for these simulations is windowed, the energy flux

oscillates in time which can be seen in the top panels of 7a and 7b.

(a) Single layer (b) Double layer

Figure 7: Energy flux profiles for the single layer (a) and double layer (b) stratification
profiles. The bottom panels show the running average over one oscillation period of the
vertical energy flux through the top and bottom boundaries. These simulations had ! =
0.67 s�1 for (a) or ! = 0.71 s�1 for (b), Â = 2.3 · 10�4, and were run for 10 oscillation
periods.

To smooth this oscillation, the bottom panels of Figure 7 show the running average

over one oscillation period. This is why those plots stop one period before the end of the

simulation. The remaining wiggles in the lines would be reduced if the simulations had

smaller time steps because that would give more data points per period.

Figure 8 shows plots the running average over one period of the three terms in the en-

15



(a) Single layer (b) Double layer

Figure 8: The 3 energy flux terms in (19) on the top boundary for the single layer (a)
and double layer (b) stratification profiles. The energy flux values are the running average
over one oscillation period. These simulations had ! = 0.67 s�1 for (a) or ! = 0.71 s�1

for (b), Â = 2.3 · 10�4, and were run for 10 oscillation periods.

ergy flux equation (19) for the top boundaries for the single and double layer stratification

profiles shown in Figures 3 and 4. The kinetic advection for both layerings goes to zero as

expected. It is unclear why the viscous term does not got to zero as I expect. However,

the plots do match the expectation that the pressure works would be almost exactly the

same as the total energy fluxes shown in Figure 7.

5 Conclusions

The DNS using spectral methods to solve the Boussinesq equations successfully repro-

duces the results of laboratory experiments and o↵ers a method of analyzing the vertical

propagation of energy through di↵erent stratification profiles. While I found that pres-

sure work is indeed the dominant energy flux term as predicted, there are discrepancies

between the predicted and simulated energy flux values that need to be resolved.
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The code could be improved to reduce aliasing in order to handle waves forced at higher

amplitudes. This could be done using HPC resources to increase the spatial and temporal

resolution, using an adaptive time stepping procedure, or modifying the implementation

of viscosity to increase dissipation. Implementing a sponge layer would further reduce the

possibility of waves reflected from the bottom of the domain interfering with the flow of

interest.

Future extensions to this project will include adjusting the parameters to be closer to

representing the Arctic Ocean as opposed to a laboratory experiment. This will involve

reinstating rotational e↵ects, adding more mixed layers to the background stratification

profiles, adjusting the di↵usivity and viscosity of the fluid, and changing the frequency,

amplitude, and windowing of the boundary forced waves. Other extensions would be to

make a comparison with the theoretical model presented by Ghaemsaidi et al. (2016) or to

use the code to simulate internal wave tunneling through di↵ering numbers and thicknesses

of mixed layers.
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