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Abstract

Thermohaline staircases consist of a series of horizontal, well-mixed layers, each on the order of

a meter thick, separated by thin interfaces, across which temperature and salinity make abrupt

jumps. While they have been consistently observed several hundred meters below the surface of the

Arctic Ocean for over fifty years, little is known about their long-term evolution. Such stratification

structures a↵ect the propagation of internal waves and, because of an e↵ect called internal gravity

wave tunnelling, interactions between internal waves and staircases can be complex. This thesis

presents a novel method of detecting thermohaline staircase layers in observations, analyzes their

evolution on a decadal scale, and examines their interactions with internal waves.

Inspired by the patterns made by observations of thermohaline staircases in temperature-salinity

space, I develop a novel detection method. Using the Hierarchical Density-Based Spatial Clustering

of Applications with Noise algorithm, I find I can detect and connect staircase layers across datasets

of hydrographic profiles from the Canada Basin in the Arctic Ocean. This o↵ers an advantage over

previous detection methods which treat each profile individually as, here, the sprawling horizontal

nature of the layers can be analyzed.

Using this clustering method, I identify layers in the Beaufort Gyre Region which span over

1000 km horizontally and persist for nearly two decades. In addition to reproducing many results

from previous studies, I find the layers to be evolving in time. The layers are sinking at approximately

the same rate as the overall downwelling in the region. I also find that layers in the upper staircase

are warming while layers near the bottom are cooling.

I develop a set of numerical experiments to examine the interactions between internal waves and

idealized staircase stratification structures. For structures with one layer, I find the transmission of

waves decreases monotonically as the layer thickness gets larger relative to the wavelength. With

multiple layers present, I find peaks in transmission for particular ratios of thickness to wavelength,

the patterns of which become more complex as more layers are added. I also reproduce the results

of a laboratory experiment, finding the same pattern of reflection and transmission of waves.
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Chapter 1

Introduction

1.1 Background

Climate change and Arctic Amplification

In the past 50 years, global mean surface temperature has been rising at a rate of around 0.2�C

per decade (NOAA, 2022), faster than in any other period in at least the last 2000 years. Similarly,

the current rate of increase in global ocean heat content is faster than in any other period since the

last deglaciation, which was between 11–18 thousand years ago (Gulev et al., 2021). In the previous

decade (2010–2019), global sea surface temperatures rose at a rate of 0.28�C per decade, 4.5 times

faster than the rate from 1900–2019, which was of 0.062�C per decade (Garcia-Soto et al., 2021).

Below the ocean’s surface, these rates are slower, however still increasing. In the upper 2000 m,

global ocean temperatures rose at the rate of 0.047�C per decade from 1993–2000, increasing to

0.064�C per decade from 2000–2020 (Su et al., 2022). Compared to the rest of the world, the mean

surface air temperature of the Arctic has been warming at a rate around four to five times faster

(Gulev et al., 2021; Rantanen et al., 2022), a phenomenon known as Arctic amplification (Cohen et

al., 2014; Timmermans & Marshall, 2020). This is related to recent changes in the sea ice (Li et al.,

2024) and the Arctic Ocean is projected to warm at a rate of up to three times that of the global

ocean average by the end of the 21st century (Shu et al., 2022). This makes the Arctic a particularly

crucial region to monitor for the e↵ects of climate change.

The North Atlantic Current sends water through the Fram Strait between Greenland and Sval-

bard into the Arctic Ocean (Carmack et al., 1997; Wells & Wettlaufer, 2007). This interacts with

the cold and fresh Arctic surface layer, which mainly comes from river runo↵, sea ice melt, and

low-salinity water from the North Pacific (Ekwurzel et al., 2001; Lincoln et al., 2016). The warm

and salty Atlantic Water (AW) subducts beneath these surface waters to occupy depths between

250–800 meters (Timmermans et al., 2008). This AW layer is the most significant heat reservoir in

the Arctic Ocean (Richards et al., 2022) and has warmed markedly since the mid-twentieth century

(Carmack et al., 1997; Polyakov, Pnyushkov, & Timokhov, 2012). Moreover, many authors have

noted that, while the AW is stable at depth, it contains enough heat to melt all Arctic sea ice if it

were somehow able to reach the surface (Maykut & Untersteiner, 1971; Aagaard & Greisman, 1975;

Steele & Boyd, 1998; Ekwurzel et al., 2001; Timmermans et al., 2008; Turner, 2010; Fer, 2014; Shaw

& Stanton, 2014; Polyakov et al., 2017; Stranne et al., 2017; Shibley et al., 2020; Lu et al., 2022;
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Figure 1.1: A map of the Arctic region. Adapted from CIA World Factbook (Public Domain).
Retrieved June 6, 2024 from https://commons.wikimedia.org/w/index.php?curid=531491.

Brown & Radko, 2022; Richards et al., 2022). Indeed, Arctic sea ice is steadily disappearing with

summer sea ice extent declining at a rate of around 10% per decade (Comiso et al., 2008; Garcia-Soto

et al., 2021). Exposure to heat from below, in addition to the warming atmosphere above, would

accelerate this decline (Turner, 2010).

Properties of Seawater

The density ⇢ of seawater is determined by three factors: pressure, temperature, and salinity. Over-

all, ⇢ is fairly constant around a reference value ⇢0 = 1.027⇥ 103 kg m�3 (Vallis, 2017). The biggest

variation in density is the background vertical profile ⇢̂, though this only amounts to a few percent

change in total density from top to bottom (Sutherland, 2010). With a density stratification, a fluid

parcel displaced vertically will undergo oscillations as buoyancy forces work to return it to its orig-

inal depth. The frequency of these oscillations N is known as the Brunt-Väisälä, stratification, or

buoyancy frequency and its square is proportional to the gradient of the background density profile.
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When ⇢0 ⇡ ⇢, then N2 = �(g/⇢0)@z ⇢̂ to a good approximation (Sutherland, 2010; Kundu et al.,

2015).

In certain cases, it can be useful to employ a quantity called potential density anomaly. Potential

density is the density a particular fluid parcel would have if brought to a reference pressure pr through

an isentropic and isohaline process (IOC, 2010). That is, without transferring heat, mass, or salinity

to its surroundings and without the dissipation of mechanical energy. In this thesis, I use a reference

pressure of pr = 1000 dbar. The potential density anomaly � is simply the potential density minus

1000 kg m–3 (IOC, 2010).

The majority of pressure di↵erences are accounted for by the background profile, which is in

hydrostatic balance with ⇢̂ (see Section 4.2.1) (Vallis, 2017) and, except for in the abyssal ocean,

does not have a significant e↵ect on density (Sutherland, 2010). For small fluctuations in both

temperature and salinity, the density of seawater can be expressed in the following linear equation

of state (Sutherland, 2010; Cushman-Roisin & Beckers, 2011; Vallis, 2017)

⇢ = ⇢0[1 � ↵(T � T0) + �(S � S0)] ) N2 = g (�↵@zT + �@zS) , (1.1)

where T0, and S0 are reference values of temperature and salinity, respectively; ↵ (units of K�1) is

the thermal expansion coe�cient (Timmermans et al., 2008; Cushman-Roisin & Beckers, 2011), and

� (unitless) is the haline contraction coe�cient (Bebieva & Timmermans, 2019; van der Boog, Otto

Koetsier, et al., 2021).

In this thesis, I use the quantity called conservative temperature ⇥, the temperature measure

recommended by TEOS-10 (McDougall & Barker, 2011). This is defined as the potential enthalpy

h0 divided by a fixed heat capacity (McDougall & Barker, 2011), where h0 is the enthalpy (internal

thermal energy plus pressure-volume potential energy) a parcel of fluid would have after being

brought to sea level pressure through an adiabatic and isohaline process (Kundu et al., 2015). Many

other studies use the similar quantity, potential temperature ✓. For the range of temperatures and

salinities of data analyzed in this thesis, the di↵erence |✓ � ⇥| is a systematic shift that is always

less than 0.05�C (McDougall & Barker, 2011).

Seawater is a solution of ions such as chloride, sodium, sulfate, magnesium, etc. However, as

first reported in 1819, the ratios between these di↵erent components is nearly constant throughout

the ocean and the term salinity refers to the amount of these materials in a particular sample of

water (Millero, 2010; Vallis, 2017). Specifically, absolute salinity SA is defined as the mass fraction of

dissolved non-H2O material in seawater and is reported in g/kg (Millero, 2010; IOC, 2010). However,

as measuring the dissolved material in a seawater sample is cumbersome, most salinity observations

use the practical salinity SP scale based on the measured conductivity (Millero, 2010). While SP

is easier to measure, di↵erent samples with the same conductivity from di↵erent areas around the

ocean can have di↵erent compositions, and so conversions are made from SP to SA based upon the

location of the measurement (McDougall & Barker, 2011).

Double Di↵usion and Thermohaline Staircases

Following the widely-used naming conventions of equation (1.1), two thirds of the world’s oceans are

alpha oceans which are stratified by temperature, with the warmest waters at the surface and colder

waters at depth (Stewart & Haine, 2016). This is in contrast to the 15% that are beta oceans, the only
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regions where sea ice can form over deep water, such as the Arctic which are primarily stratified

by salinity; therefore the warm, salty AW is stable at depth (Carmack, 2007). This distinction

arises from the non-linear thermal contraction of seawater, whose influence on density becomes

negligible compared to that of salinity when temperatures approach 0�C. Beta oceans are found at

high latitudes, alpha oceans at lower latitudes, and the remaining oceans are called “transition zone

oceans” (Stewart & Haine, 2016). The border between these two domains has been moving pole-

ward in the northern hemisphere, part of a process called “Atlantification,” and can be seen in the

Greenland Sea which transitioned from the beta to alpha domain over the past 40 years (Gjelstrup

& Stedmon, 2024).

The AW core is defined to be at the location of the subsurface temperature maximum, generally

centered around depths of 300-500 m, just below the pycnocline where density increases rapidly with

depth (Aagaard et al., 1981; Wells & Wettlaufer, 2007). This density stratification above the AW

core has historically been strong enough to insulate surface waters from the warmth below (Aagaard

et al., 1981; Fer, 2014; Shibley et al., 2017). Heat di↵usion in the ocean is very slow (Turner, 2010),

so heat from the AW could only rise at a significant rate due to vertical mixing from external sources

(Guthrie et al., 2013).

The top of the pycnocline usually coincides with the lower halocline waters, the core of which is

defined as the depths of salinity S = 34.1 (Lu et al., 2022). Between the cores of the lower halocline

waters and the AW, the water’s density changes suddenly every few meters forming a “staircase”

(Sutherland, 2016). This characteristic pattern can be seen in Figure 1.2 with layers that are

several meters thick, have well defined and homogeneous temperature, salinity, and density, and are

separated by sharp gradient interfaces (Sutherland, 2016; Shibley & Timmermans, 2019). Because

these stratification structures are found where temperature and salinity are changing rapidly, they

are often referred to as thermohaline staircases. However, they fall under the more general category

of double-di↵usive staircases.

When a fluid’s density increases monotonically downwards, it is considered stably stratified.

However, if a stably stratified fluid has two components that a↵ect its density and the vertical

gradient of one component is statically unstable, this gives rise to double di↵usion (van der Boog,

Dijkstra, et al., 2021). Potential energy is stored in the unstable gradient which, if not for the

stabilizing gradient of the other component, would cause the density to increase upwards. While

initially documented in the ocean, double di↵usion is now studied in many contexts such as saline

lakes (Newman, 1976), lattes (Xue et al., 2017), and in stars and gas giants such as Jupiter and

Saturn where it is referred to as semi-convection (André et al., 2017; Pontin et al., 2021). Double

di↵usion can occur when there are two density-a↵ecting components that di↵use at significantly

di↵erent rates.

In the ocean, the two components are temperature, which di↵uses at a rate T ⇡ 1.4⇥10�7m2/s,

and salinity, which di↵uses at a rate S ⇡ 1.1 ⇥ 10�9m2/s (Radko, 2013; Shibley & Timmermans,

2019). Seawater could have a stabilizing gradient of temperature decreasing with depth as well as a

destabilizing gradient of salinity decreasing with depth. This case, where the more slowly di↵using

component is unstably stratified, is referred to as the salt fingering regime. The case where unstable

stratification is in the faster di↵using component (i.e., both temperature and salinity increasing with

depth) is called di↵usive-convection (Linden & Shirtcli↵e, 1978). These two regimes are graphically

depicted in Figure 1.3.
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Figure 1.2: An example profile, number 1257 from Ice-Tethered Profiler 1 (see Section 1.2) in
(a) conservative temperature, (b) absolute salinity, (c) potential density anomaly referenced to
1000 dbar, and (d) buoyancy frequency. This profile was taken on Monday, June 26th, 2006 at
136.1525�W, 77.2870�N.

The layers that make up the staircases are known to be laterally coherent across hundreds of

kilometers, either through tracing individual layers across di↵erent profiles or through features in

temperature–salinity space, as discussed in Section 1.3 (Schmitt et al., 1987; Timmermans et al.,

2003, 2008; Toole et al., 2011; Lu et al., 2022). They have aspect ratios as large as 105–106 and,

for this reason, are sometimes referred to as “sheets.” The exact mechanisms which form staircases

have been debated for more than fifty years (Radko, 2013). A recent study presented a method in

which the formation has less to do with double-di↵usive instabilities and more with shear instabilities

(Y. Ma & Peltier, 2022). However, it is accepted that having opposing stability gradients in two

components is a necessary component (Sutherland, 2016; Shibley & Timmermans, 2019; Y. Ma &

Peltier, 2022). Occurring at such small scales, these processes are di�cult to represent in climate

models and therefore di�cult to predict their impacts on the global ocean (Ménesguen et al., 2022).

In this thesis, I am not concerned with the processes behind the formation of thermohaline staircases,

only on their existing presence in the Arctic Ocean.

Using data from autonomous instruments, van der Boog, Dijkstra, et al. (2021) mapped locations

of thermohaline staircases throughout the world’s oceans, with the salt fingering regime correspond-

ing to alpha oceans and di↵usive-convection to beta oceans (see Figure 1.4). In particular, the

highest concentration of di↵usive-convection staircases is in the Arctic, a region where such struc-

tures have been particularly well-studied (Timmermans et al., 2008; Lu et al., 2022; Ménesguen

et al., 2022). The first recorded observation of thermohaline staircases in the Arctic Ocean was

made in 1969 at Ice Island T-3 (Neal et al., 1969). This iceberg, located somewhat northeast of the

Canada Basin (often defined as 72–84�N, 130–155�W, see e.g. Peralta-Ferriz & Woodgate (2015))

was the site of dozens of hydrographic profiles that contain clearly visible staircases (Neshyba et al.,

1971, 1972; Neal & Neshyba, 1973). Subsequent observations indicate that the staircases have been

a consistent feature of the Canada Basin, including from data collected during the Arctic Internal
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Figure 1.3: The two double di↵usive regimes. The pink arrows indicate the direction in which
the temperature gradient acts to increase density and the black arrows indicate in which direction
salinity acts to increase density. Arrows pointing downwards represent stabilizing gradients while
upwards pointing arrows represent destabilizing gradients.

Wave Experiment (AIWEX) (Padman & Dillon, 1987, 1988, 1989) and the Surface Heat Budget

of the Arctic (SHEBA) experiment (Shaw & Stanton, 2014). The frequency of such observations

increased dramatically in 2004, when the introduction of autonomous Ice-Tethered Profilers made

possible the continuous, year-round sampling of the Arctic Ocean water column (Toole et al., 2011).

Figure 1.4: The global distribution of thermohaline staircases in the salt-fingering regime (red) and
the di↵usive-convection regime (blue), with data between 2001 and 2020. The shade of each dot
indicates the number of steps detected in the profile, either from an Argo float or Ice-Tethered
Profiler. Reproduced from van der Boog, Dijkstra, et al. (2021).

Since the start of high-resolution observations, thermohaline staircases have been persistent and

wide-spread features of the Arctic Ocean (Timmermans et al., 2003; Polyakov, Pnyushkov, Rembe,

et al., 2012; Lu et al., 2022). However, the lower sections of Arctic staircases have been disappearing
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in recent years. While the mechanisms behind this transition are as of yet unclear, it coincides with

changes to the large scale circulation and the decline in sea ice cover, which plays a major role in

regulating energy input to the Arctic Ocean (Ménesguen et al., 2022).

Internal Waves in the Arctic Ocean

While surface waves occur at the boundary between the ocean and the atmosphere, internal waves

propagate within the ocean itself (Sutherland, 2010). Because these waves depend on the influence of

buoyancy, their interactions with intricate stratification structures such as thermohaline staircases

can be complex (Sutherland, 2016). Compared to most regions of the global ocean, the Arctic’s

internal wave field is less energetic (Guthrie et al., 2013; Ghaemsaidi et al., 2016; Lincoln et al.,

2016). This is mainly due to three factors: weak tidal forcing, limited interactions with other

oceans, and sea ice.

Tidal forcings from the sun and the moon oscillate the ocean across bottom topography which

generates internal waves (Simmons et al., 2004). As detailed in Section 4.2.2, internal waves in a

strongly stratified fluid cannot propagate when their frequency is less than the absolute value of the

Coriolis frequency, defined as f = 2⌦e sin(�) at a latitude � where ⌦e = 2⇡/(24 hours) is the rotation

rate of the Earth (Vallis, 2017). The barotropic M2 tide is forced by the Moon and has a period of

12.4 hours (Nash et al., 2012; Morozov & Paka, 2010). In the Arctic, there is a critical latitude of

74.5�N at which the M2 tidal frequency equals the Coriolis frequency, i.e., !M2 = f (Simmons et al.,

2004). Therefore, in the region north of this latitude, which encompasses the majority of the Arctic

Ocean, waves generated by the M2 tide cannot propagate (Fer, 2014). This weak tidal forcing leads

to lower internal-tide energies in the Arctic compared to oceans at lower latitudes (Guthrie et al.,

2013).

The majority of the region south of the critical latitude for the M2 tide at 74.5�S is covered by

Antarctica. Therefore the same weak tidal forcing does not apply to the Southern Ocean. However,

the Arctic Ocean is also less energetic because of its relatively restricted interactions with the global

ocean. The Southern Ocean is surrounded on all sides by other oceans and, while some robust

staircases have been observed, many are seasonally disrupted by turbulent mixing (Bebieva & Speer,

2019). In contrast, Arctic Ocean is primarily surrounded by land with only limited interactions with

the Pacific and Atlantic Oceans through relatively narrow straits (Hassol, 2004).

Persistent ice cover in the Arctic limits the energy which can be transferred to the ocean from

wind-driven shear and also acts to dissipate internal wave energy at the ocean-ice boundary (Guthrie

et al., 2013; Fer, 2014). Where the ocean is exposed, wind blowing across the surface can generate

internal waves leading to a more energetic internal wave field when wind speeds are high (Dosser

& Rainville, 2016; Ghaemsaidi et al., 2016). These internal waves can act as a conduit between

the surface and the ocean interior, exerting forces on the fluid and causing turbulence and mixing

where they break (Sutherland, 2010; Klymak & Legg, 2010). While staircases have been shown to be

notably resistant to shear forces (Brown & Radko, 2022), they are less often observed in turbulent

areas of the Arctic, such as those with minimal ice cover (Shibley & Timmermans, 2019).

The tides, geography, and sea ice cover lead to the Arctic Ocean having an environment conducive

to the stable, year-round presence of thermohaline staircases. However, as Arctic sea ice continues

to decline, there is growing concern over the potential impacts of increased interactions between the

atmosphere and the Arctic Ocean (Rainville et al., 2011). Indeed, increases of up to two orders of
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magnitude in kinetic energy have been seen in response to ice breakup (Lincoln et al., 2016). This

has lead many to speculate that an increase in wind-generated internal waves could lead to deeper

vertical mixing (Rainville et al., 2011; Fer, 2014; Shibley & Timmermans, 2019). As vertical mixing

increases, heat from the AW will more easily be transferred to the surface leading to further ice loss

which will allow more wind energy to transfer into the ocean in a positive feedback loop (Turner,

2010). This is in addition to the well-known ice-albedo positive feedback where the ocean, being

much less reflective than sea ice, absorbs more solar radiation, warming up, melting more sea ice,

and exposing more ocean to the sun (Comiso et al., 2008; Cohen et al., 2014; Sledd & L’Ecuyer,

2021). Continued loss of sea ice in the Arctic will have major consequences for both the resident

ecosystems and large scale circulation (Comiso et al., 2008; Ghaemsaidi et al., 2016).

While an increase in internal wave activity has been seen in correlation with decreases in ice

cover, observations have not shown a similar increase in mixing from the AW compared to ice-

covered regions (Lincoln et al., 2016). This is often attributed to the sharp stratification of the

pycnocline. While internal waves could potentially bring energy that could be used for vertical mix-

ing, thermohaline staircases, where the water’s density changes suddenly every few meters, present

obstacles to their propagation at each step (Sutherland, 2016). As shown in Section 4.2.2, internal

waves cannot propagate in regions where their frequency ! is greater than the buoyancy frequency

N which is proportional to the derivative of density. As can be seen in Figure 1.2(d), N is e↵ectively

zero within each well-mixed layer, creating barriers to any internal wave with non-zero frequency.

However, if these well-mixed layers are thin enough in comparison to the wavelength, the internal

waves will propagate out the other side, a phenomenon known as internal gravity wave tunnelling

(Eckart, 1961; Sutherland & Yewchuk, 2004; Ghaemsaidi et al., 2016). Many authors have studied

this phenomenon under particular circumstances (Sutherland & Yewchuk, 2004; Ghaemsaidi et al.,

2016; Wunsch, 2018; Supekar & Peacock, 2019; Boury et al., 2019), however, it is still unclear how

much internal waves can transmit through stratification structures in the Arctic (Sutherland, 2016).

1.2 Ice-Tethered Profiler Data

The hydrographic profile data which I use in this thesis come from the Ice-Tethered Profilers (ITPs).

These are automated, vertically profiling instruments that are connected via a wire cable to a surface

buoy on an ice floe as depicted in Figure 1.5(a) (Toole et al., 2011). The wire extends from the surface,

through the ice, down to depths of 500–800 m. The profiler travels up and down the wire roughly

two to three times a day collecting high-resolution (⇠25 cm) measurements of salinity, temperature,

and pressure with a salinity precision of ±0.005 g/kg and a temperature precision of ±0.001�C

(Timmermans et al., 2008; Shibley et al., 2017; Bebieva & Timmermans, 2019). As opposed to

ship-based measurements, ITPs necessarily record profiles under areas of high ice concentration.

ITP data are archived at the NOAA National Centers for Environmental Information repository

(Toole et al., 2016) (accessed September 21, 2023). In order to take full advantage of the ⇠25 cm

resolution, I use the Level III Matlab-format data files as opposed to the Level III “final” format

which bin-averages the data to a 1-dbar vertical resolution (Krishfield et al., 2008).

Each traverse, alternating up or down, is recorded as a separate profile. ITPs have recorded over

160,000 profiles across the entire Arctic Ocean (see Figure 1.5(b)), however the highest concentration

of observations is in the Canada Basin. ITP data have been used in numerous studies to analyze
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Figure 1.5: (a) A schematic of an Ice-Tethered Profiler, showing how the surface buoy on the ice
is connected to the wire upon which the profiler moves up and down while taking measurements.
Reproduced from Toole et al. (2011). (b) A map of ITP profiles taken between 2004–2023. The red
box designates the Canada Basin as defined by Peralta-Ferriz & Woodgate (2015).

thermohaline staircases (Timmermans et al., 2008; Shibley et al., 2017; Bebieva & Timmermans,

2017; Shibley & Timmermans, 2019; Bebieva & Timmermans, 2019; van der Boog, Otto Koetsier,

et al., 2021; Ménesguen et al., 2022; Lu et al., 2022; Shibley & Timmermans, 2022), and many have

noted the wake problem. Because the measuring instruments are located at the top of the profiler,

the down-going profiles contain distortions caused by the wake of the profiling unit itself. While

these distortions do not change the general shape of the profile, they do disrupt fine-scale features.

Therefore, studies that analyze thermohaline staircase structure generally limit analysis to only the

up-going profiles (Timmermans et al., 2008; Shibley et al., 2017; Lu et al., 2022).

1.3 The HDBSCAN clustering algorithm

Many studies, notably Timmermans et al. (2008) in Figure 1.6, have observed that a collection of

profiles that includes well-mixed layers, such as thermohaline staircases, is associated with clustered

patterns when plotted in temperature-salinity (T–S) space (Schmitt et al., 1987; Toole et al., 2011;

Yu et al., 2017; Bebieva & Timmermans, 2019). This clustering indicates that layers are thin sheets,

extending laterally for 100’s of kilometers (Timmermans et al., 2008; Lu et al., 2022). These patterns

occur where a staircase is present because all data points within a particular layer have approximately

the same temperature and salinity values as other observations from the same layer, regardless of

their vertical position within the layer. This fact suggests that staircases could be detected by directly

identifying clusters in T–S space. Clustering algorithms are a type of unsupervised machine learning,

and have been previously used in a variety of di↵erent oceanographic applications (Sonnewald et al.,

2021). Examples include grouping observations from freely-drifting instruments in the Nordic Seas
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(Koszalka & LaCasce, 2010), studying surface wave variability in the North Atlantic (Espejo et al.,

2014), classifying the heat content of hydrographic profiles (Maze et al., 2017), resolving trapping

in mesoscale eddies (C. Ma et al., 2019), defining spatial regions for Southern Ocean temperature

profiles (Jones et al., 2019), detecting ENSO events (Houghton & Wilson, 2020), finding hot spots

for mixing in the Southern Ocean (Rosso et al., 2020), and identifying shifts in the North Atlantic

circulation (Desbruyères et al., 2021). However, to my knowledge, they have never before been used

to identify thermohaline staircases.

Figure 1.6: The potential temperature and salinity values between 200–300 m depth from profiles
taken by ITP2 spanning around 200 km laterally with lines indicating constant potential density
anomaly (referenced to the surface). The thin (thick) line represents the westernmost (easternmost)
profile. Reproduced from Timmermans et al. (2008)

In Chapters 2 and 3, I apply the Hierarchical Density-Based Spatial Clustering of Applications

with Noise (HDBSCAN) algorithm to data from ITPs. While Campello et al. (2013) present the

algorithm in full detail, here I briefly review its general principles.

In the context of density based clustering algorithms, the term “density” refers to a measure of

the relative number of data points in a certain region of parameter space. HDBSCAN estimates the

density of a region based on the distances between points and a number of their nearest neighbors,

creating a hierarchy of clusterings from which it chooses the most prominent. First, it calculates

the “core distance” " for each point as the minimum radius of a circle needed to encompass its mpts

nearest neighbors. The inverse of " represents density; when it is small, points are close together and

when it is large, points are spread out. HDBSCAN then creates a hierarchy of clusterings, starting

with the largest " and working down. For each value "0, it first detects the level-set of non-noise

points, where "  "0, then connects points together in the same cluster if they are within a distance

of "0.
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As the value of "0 decreases, a particular cluster may change by shrinking, splitting, or disap-

pearing entirely. Having built this hierachry tree, HDBSCAN can then select clusters at the ends of

branches even though di↵erent branches may terminate at very di↵erent values of "0. However, when

the data are particularly noisy, just before crossing the "0 threshold where a cluster would disappear,

it may split into many small, spurious clusters. To avoid including these artifacts in the final result,

the algorithm ignores all clusters with fewer than mclSize number of points. The recommendation

of the authors of HDBSCAN and the default behavior of the “hdbscan” Python package is to set

mclSize = mpts (Campello et al., 2013; Moulavi et al., 2014), giving one hyperparameter which

controls both how the core distance is calculated and the minimum points per cluster. The term

hyperparameter is used to describe parameters given as input before running the algorithm. While

there are other optional hyperparameters for HDBSCAN (see Section A.3), the results I obtained

using the default settings were satisfactory and so I did not investigate their e↵ects.

I choose HDBSCAN over other types of clustering algorithms for several reasons. Many previous

oceanographic studies used partitioning algorithms such as k-means (Koszalka & LaCasce, 2010;

Espejo et al., 2014; Houghton & Wilson, 2020) or Gaussian mixture models (Maze et al., 2017;

Jones et al., 2019; Rosso et al., 2020; Desbruyères et al., 2021); however, partitioning algorithms

require one to specify the number of clusters a priori, which is not known for my application. The

first reason for choosing HDBSCAN is that it does not have this requirement (Ester et al., 1996;

Jones et al., 2019). Second, HDBSCAN allows points that lie outside a cluster to be categorized as

“noise.” In my case, this is important because points in an interface between layers should not be

assigned to any cluster. Third, unlike DBSCAN, which uses the same threshold "0 for all clusters

throughout the domain (Ester et al., 1996; Campello et al., 2013), HDBSCAN creates a hierarchy

of clusterings with di↵erent "0 and can therefore correctly identify clusters that vary significantly in

both the number of points per cluster and the densities of points within the clusters (McInnes et al.,

2017). Fourth, HDBSCAN can correctly identify arbitrarily shaped clusters, whereas partitioning

algorithms like k-means generally find center-defined clusters, which, because points are assigned to

clusters based on their distance from the cluster’s center point, are only equipped to find globular, or

convex, clusters (Hinneburg & Keim, 2003; Ester et al., 1996). This is important because the shapes

of clusters associated with thermohaline staircases are not necessarily globular. Lastly, HDBSCAN

requires only one hyperparameter (mpts) to be specified, reducing the number of choices to be made

before each run of the algorithm. Further, I determine the value of mpts systematically, as explained

in Section 2.3.2.

1.4 Overview

The overall objective of this thesis is to examine thermohaline staircases and their interactions in the

Arctic Ocean, particularly in the Canada Basin where they have been most consistently observed.

Given their potential role in modulating the Arctic climate, it is important to be able to accurately

identify thermohaline staircases in observations to monitor changes.

Many previous studies have analyzed thermohaline staircases in the Arctic Ocean (Timmermans

et al., 2008; Shibley et al., 2017; Bebieva & Timmermans, 2019; Lu et al., 2022). However, most

large-scale e↵orts to detect staircases have relied on methods which treat each hydrographic profile

individually. While such methods can provide information such as the locations of staircases, layer
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thicknesses, fine-scale structure of temperature and salinity, etc., they do not allow for the analysis

of the staircases as the sprawling horizontal structures they are. In Chapter 2, I describe a novel

technique to detect and connect staircase layers across many hydrographic profiles using an unsu-

pervised clustering method. I compare the properties of the layers this clustering method detects

to those of previous studies using di↵erent detection methods on the same data sets and find close

agreement. I describe how this method could be extended to identify layers in much larger datasets.

The work described in Chapter 2 is published in Environmental Data Science (Schee et al., 2024).

Thermohaline staircases have been a well-known feature of the Arctic Ocean for over fifty years

and their layers have been shown to extend horizontally for hundreds of kilometers (Neal et al., 1969;

Timmermans et al., 2003, 2008; Lu et al., 2022). However, few studies have described how the prop-

erties of individual layers change over more than a few years (Polyakov, Pnyushkov, Rembe, et al.,

2012; Ménesguen et al., 2022; Lu et al., 2022). These structures have potentially significant impacts

on vertical transport of energy, however the impact of their stratification is not well-represented in

climate models (Timmermans & Pickart, 2023). It is important to analyze in detail how staircase

layers change over time in order to better predict the future evolution of the Arctic Ocean. In Chap-

ter 3, I apply the unsupervised clustering method to a dataset of hydrographic profiles. I establish

new coherency scales for staircase layers, finding individual ones which span across 17 years and the

entire Canada Basin, on the order of 1000 km. I also find layers changing in temperature across

time, with layers near the top of the staircase warming and layers near the bottom cooling. An

article based on the work described in Chapter 3 is in preparation.

As Arctic sea ice declines, there is concern that an increase in wind-generated internal waves could

provide the energy needed to release heat from the underlying AW (Sutherland, 2010; Turner, 2010;

Rainville et al., 2011; Fer, 2014). The recent increase in internal wave activity has not coincided with

an increase in mixing from the AW, a fact attributed to the strong stratification of the pycnocline

(Lincoln et al., 2016). However, according to theory and confirmed by experiments, internal gravity

wave tunnelling can occur, allowing internal waves to pass through certain types of stratification.

(Eckart, 1961; Sutherland & Yewchuk, 2004; Ghaemsaidi et al., 2016; Sutherland, 2016). As the

Arctic continues to change, the question remains as to under what conditions might internal waves be

able to propagate through thermohaline staircases. In Chapter 4, I present numerical experiments of

internal wave interactions with stratification structures resembling those of thermohaline staircases. I

solve the Boussinesq equations of motion for experiments in both one and two spatial dimensions and,

in both cases, find results that match those of previous studies. This agreement suggests that such

numerical experiments could be extended to make predictions of how interactions between internal

waves and thermohaline staircases may look in the future. In Chapter 5, I provide a summary of

the salient results from this thesis and describe promising avenues for future exploration on these

topics.
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Chapter 2

Unsupervised clustering identifies

thermohaline staircases in the

Canada Basin of the Arctic Ocean

Abstract Thermohaline staircases are a widespread stratification feature that impact the vertical

transport of heat and nutrients and are consistently observed throughout the Canada Basin of

the Arctic Ocean. Observations of staircases from the same time period and geographic region

form clusters in temperature-salinity (T–S) space. Here, for the first time, we use an automated

clustering algorithm called the Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN), to detect and connect individual well-mixed staircase layers across profiles from

Ice-Tethered Profilers (ITPs). Our application only requires an estimate of the typical layer thickness

and expected salinity range of staircases. We compare this method to two previous studies that used

di↵erent approaches to detect layers, and reproduce several results including the mean lateral density

ratio RL and that the di↵erence in salinity between neighboring layers is a magnitude larger than the

salinity variance within a layer. We find that we can accurately and automatically track individual

layers in coherent staircases across time and space between di↵erent profiles. In evaluating the

algorithm’s performance, we find evidence of di↵erent physical features, namely splitting or merging

layers and remnant intrusions. Further, we find a dependence of RL on pressure, whereas previous

studies have reported constant RL. Our results demonstrate that clustering algorithms are an

e↵ective and parsimonious method of identifying staircases in ocean profile data. The contents of

this chapter are adapted from the corresponding article in Environmental Data Science (Schee et

al., 2024). Replication code can be found on Zenodo: https://zenodo.org/doi/10.5281/zenodo

.8029947.

Impact Statement Clustering algorithms are unsupervised machine learning methods that are

used across many areas of data science. The use of such methods can automate the identification of

certain features, thus allowing for analysis of very large datasets. Here, we show that a particular

clustering algorithm called HDBSCAN can be used to automatically identify thermohaline stair-

cases in hydrographic profiles from the Arctic Ocean. Compared to previous detection methods,
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HDBSCAN has the advantages of requiring minimal prior knowledge and of automatically connect-

ing individual staircase “steps” across di↵erent hydrographic profiles. We expect that this method

could be applied to many similar datasets, o↵ering a straightforward way to identify and track layers

in thermohaline staircases across the world’s oceans.

2.1 Introduction

Thermohaline staircases, formed by di↵erential di↵usion rates of heat and salt, appear as a series of

vertically well-mixed horizontal layers each separated by thin, strongly stratified interfaces. These

structures have been observed throughout the world’s oceans (van der Boog, Dijkstra, et al., 2021)

and in particular, they are well known to occur in the Arctic Ocean (Timmermans et al., 2008; Lu

et al., 2022; Ménesguen et al., 2022). As described in Section 1.1, around 250 to 800 meters below

the surface of the Arctic Ocean, there is a layer of water originating from the Atlantic, which is

warmer and saltier than the topmost layer that is in contact with the sea ice above (Timmermans et

al., 2008). The core of the Atlantic Water (AW) is defined as the maximum subsurface temperature

and is generally at a depth of 400 meters in the Canada Basin. Above this depth, in a region in

which both temperature and salinity increase downwards, lies the pycnocline where the staircases

are found (Lu et al., 2022).

While Arctic sea ice has been steadily disappearing (Comiso et al., 2008), the density stratification

above the AW core has historically been strong enough to insulate surface waters from the warmth at

depth (Shibley et al., 2017). However, the lower sections of Arctic staircases have been disappearing

in recent years (Ménesguen et al., 2022). Many works have noted that the AW contains enough heat

to melt all Arctic sea ice, if it were somehow able to reach the surface (Maykut & Untersteiner, 1971;

Turner, 2010; Stranne et al., 2017; Shibley et al., 2020). Given their potential role in modulating

the Arctic climate, it is important to be able to accurately identify thermohaline staircases in

observations to monitor changes.

Although many early studies identified staircases by visual inspection, the recent increase in avail-

able data since the deployment of autonomous Ice-Tethered Profilers in 2004 has spurred researchers

to turn to algorithmic approaches. Here, we detail several previous studies whose foundational work

was critical in the development of the current study. All of these studies used a similar approach

to detect data points that fall within some well-mixed layer (henceforth for brevity simply “layer”)

on a profile-by-profile basis. Timmermans et al. (2008) defined a point in a hydrographic profile to

be detected within a layer when the local vertical potential temperature gradient @✓/@z is below

0.005�C m�1, roughly an order of magnitude smaller than the overall gradient for a typical profile.

Shibley et al. (2017) extended the automated detection method of Timmermans et al. (2008) by

including two additional conditions: (1) For each experiment, they visually determined di↵erent

threshold values on both @✓/@z and on the temperature di↵erence between neighboring points and

(2) after then running the detection method, those authors only considered staircases that consisted

of at least three layers. Van der Boog et al. (van der Boog, Otto Koetsier, et al., 2021) devel-

oped a similar staircase detection algorithm, but chose threshold values of vertical density gradients

that were expected to be applicable to staircases in all of the world’s oceans, not just the Arctic.

Specifically, they set a vertical gradient threshold of @�1/@p  0.0005 kg m�3 dbar�1 where �1 is

the density anomaly referenced to 1000 dbar. Then, from the subset of data that meets that condi-
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tion, only mixed layers with a maximum variation of density anomaly of 0.005 kg m�3 or less, and

whose neighboring interfaces had thicknesses of 30 dbar or less, were considered. Lu et al. (2022)

defined the intersections between layers and interfaces as locations where the di↵erence in the po-

tential temperature gradient between two neighboring points is greater than 0.003 �C m�1, then

disregarded the points within the interfaces. After performing this detection, Lu et al. (2022) then

made cross-profile connections with the layer points that remained, following the work of Padman &

Dillon (1988) and used valleys in histograms of salinity to guide their choice of boundaries between

layers, some of which were manually adjusted. We find it useful to distinguish between these two

steps: the detection of points within layers for each profile and the connection of these points to

those in other profiles that are within the same layer. Many previous studies did not describe a

connection method because it was not needed for their ends; we use this framing to call attention

to the novel aspects of our contribution.

All of the above techniques first detect a subset of the data points that are likely within layers

based upon vertical gradient thresholds. This approach requires both su�cient knowledge of the

staircases properties in order to select appropriate thresholds, as well as data with su�cient vertical

resolution to accurately estimate the gradients. The connection algorithm Lu et al. (2022) describe,

after its completion, still requires some amount of manual intervention to produce a final dataset

of staircase layers. A commonality of all of these approaches is that they are purpose-built for

the task of detecting staircases in specific contexts. These factors motivate the search for a more

general approach to detect and connect thermohaline layers across di↵erent profiles which could o↵er

advantages such as greater scalability and applicability as well as more ready reproducibility, all of

which would accelerate the pace of research on these important structures.

As mentioned in Section 1.3, previous authors have noted that data from sets of profiles that

contain thermohaline staircases form clusters in temperature-salinity (T–S) space, suggesting that

staircase layers could be detected by a clustering algorithm. Such algorithms have been used to

identify many features in the ocean, however, to our knowledge, have never before been applied to

thermohaline staircases. Here, we apply a method based on the Hierarchical Density-Based Spatial

Clustering of Applications with Noise or HDBSCAN algorithm (Campello et al., 2013) to both detect

and connect thermohaline staircases across Arctic hydrographic profiles. This method has several

advantages. It detects and automatically connects staircase layers across large hydrographic datasets

in one step. In the past, HDBSCAN has been successfully applied to datasets with a number of points

that were an order of magnitude larger than in this study, suggesting the application we present here

could be scaled to accommodate more data (Logan & Fotopoulou, 2020). Also, it does not consider

profiles individually and therefore does not require that each profile have fine vertical resolution.

Our implementation of this algorithm does require knowledge of the typical layer thickness and the

expected global salinity range of the staircase; however, as we will show, this is a more flexible

requirement compared to determining threshold gradients. Most importantly, it exhibits excellent

performance producing a final, connected dataset of layers to which no subsequent adjustments need

to be made, and is thus suitable for application to datasets with a large number of points as well as

being more easily reproducible. The purpose of this study is to present this method, and so we will

note possible implications of our results but will not explore them in great detail.

The structure of this chapter is as follows. First, in Section 2.2, we introduce and explain our

choice of the datasets used in our analysis. In Section 2.3, we introduce HDBSCAN and describe how
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Start Days in Starting Along-path Longest Total Up-going
ITP Date Operation Position Distance Spana Profiles Profiles
2 2004/8/19 40 77 10.4’N, 141 13.0’W 390 km 191 km 244 121
3 2005/8/23 382 74 15.0’N, 135 9.0’W 2541 km 441 km 1532 766

aThe maximum distance between any two, not necessarily consecutive, profiles.

Table 2.1: Details of the Ice-Tethered Profilers (ITPs) used in this study.

we use it to identify staircases and how we choose the input parameters. Then, in Section 2.4, we

apply this method to data from two di↵erent Ice-Tethered Profiler experiments, focusing on results

that reproduce those from the studies of Timmermans et al. (2008) and Lu et al. (2022), hereafter

denoted as T08 and L22, respectively. Finally, in Section 2.5, we use the comparison between our

results and those of T08 and L22 to evaluate the performance of the clustering algorithm and give

recommendations on when and how it can be best used to identify staircases.

2.2 Data

As described in Section 1.2, Ice-Tethered Profilers are automated instruments which take vertical

profiles of salinity, temperature, and pressure down to depths of 500–800 m with a vertical resolution

of ⇠25 cm (Timmermans et al., 2008; Shibley et al., 2017). In this study, data from two di↵erent ITP

experiments, ITP2 and ITP3, are analyzed; see Table 2.1 for a summary. Because the measuring

instruments are located at the top of the profiler, we use only the up-going profiles in order to avoid

the known distortion caused by the wake of the profiling unit in the down-going profiles (Shibley et

al., 2017). Figure 2.1 shows the locations of all up-going profiles for each of the two ITP experiments.

We choose to analyze ITP2 and ITP3 in particular in order to reproduce several results of T08 and

L22, respectively.

At this point we note some choices in the study relative to those of T08 and L22. Here we choose

to work with pressure, a directly measured quantity, while both of those studies use depth, which is

derived from pressure; as the conversion between pressure and depth is linear, this di↵erence does not

a↵ect our results or comparisons. Also note that although both of those earlier studies use potential

temperature ✓, we choose instead to use conservative temperature ⇥, as recommended by TEOS-10

(McDougall & Barker, 2011). For the range of temperatures and salinities in the data we analyze,

the di↵erence |✓ � ⇥| is a systematic shift that is always less than 0.05�C. Because this shift is

relatively constant, our results are not sensitive to this choice. Furthermore, TEOS-10 recommends

using absolute salinity SA over practical salinity SP . Our results do not change significantly using

one versus the other (see Section A.1), so we choose to use SP to make direct comparisons to the

salinity ranges used by T08 and L22.

Staircases are only found in certain vertical ranges of the water column. However, as noted by

L22, the salinity values of the layers are much more consistent across di↵erent profiles than their

pressure or temperature characteristics, so we focus our analyses on a specific salinity range for

each ITP. An appropriate range can be estimated by inspection of a few individual profiles, or from

general knowledge of the salinity range of staircases in the region. The bounds of this range need not

be precise, but choosing a range that is too small will potentially miss layers. Running the algorithm

on a liberally large range to capture all potential layers will take longer and may also return some
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Figure 2.1: A map showing the locations of all profiles used from ITPs 2 and 3, showing the whole
Arctic in (a) and a zoomed-in view in (b). The red box designates the Canada Basin as defined by
Peralta-Ferriz & Woodgate (2015).

clusters that do not correspond to meaningful thermohaline staircase layers. However, in Section

2.3.3, we detail a process of identifying erroneous clusters. For easier comparison, we choose salinity

ranges used in past work, namely, 34.05–34.75 g/kg for ITP2 following T08 and 34.21–34.82 g/kg

for ITP3 following L22.

As discussed in more detail below, the clustering algorithm does not distinguish between the

di↵erent times and locations at which di↵erent profiles were taken. It follows that a dataset to be

analyzed should not span larger temporal or spatial scales than the scales the staircases are known to

be coherent across. T08, who analyzed much of the same data we do, found staircases that spanned

the entire Canada Basin (approximately 800 km) and lasted at least 2 years. We define the longest

span as the maximum distance between any two, not necessarily consecutive, profiles. We find the

longest span ( 441 km) and duration ( 382 days) of the two ITPs we analyzed, see Table 2.1, are

indeed smaller than the known staircase coherence scales.

2.3 Methods

2.3.1 Applying the HDBSCAN clustering algorithm

To identify T–S clusters as evidence for staircases within the ITP data, we use the HDBSCAN

algorithm which, as detailed in Section 1.3, clusters data based on the relative densities in dif-

ferent regions with a single hyperparameter, mpts, the minimum number of points per cluster.

Algorithm-identified clusters in the ITP data are expected to correspond to staircase layers, with

some exceptions as detailed in Section 2.3.3.

Having chosen the HDBSCAN clustering algorithm, we now turn to specifying the two-dimensional

space within which the clustering algorithm will operate. Figure 2.2(a) shows data from ITP2 in

⇥–SP space, where discrete groups of points, associated with individual layers and spanning multiple

profiles, are apparent; these are colored according to their eventual partitioning into clusters. Note

the occurrence of occasional gaps in ⇥ values, seen in the salinity ranges 34.16–34.30 and 34.65–

34.74 g/kg. These result from the uneven spatial coverage of the meandering drift path of the ITPs
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(see Figure 2.1) together with the tendency for the temperature to vary more horizontally within a

particular layer than salinity (Lu et al., 2022). In order to avoid HDBSCAN splitting such groups

of points into multiple clusters for the same layer, for each temperature profile ⇥(z), we define the

local anomaly as

⇥0(z) = ⇥(z) � 1

`

Z
z+`/2

z�`/2
⇥(z0)dz0 (2.1)

where ` is the width of a rectangular moving average window. Presenting the ITP2 data in ⇥0–SP

space rather than ⇥–SP space, as in Figure 2.2(c), leads to groups that are more centered around

zero along the temperature axis, without notable gaps. We choose to work in this space as it will

allow HDBSCAN to group points more accurately. We also confirmed the di↵erence between using

⇥ or ✓ and SP or SA did not significantly a↵ect the results. Finally, we mention that HDBSCAN

is sensitive to the aspect ratio of the axes. Because of the relative scaling between the temperature

and salinity axes in the ranges we investigate, the algorithm puts more emphasis on salinity when

determining clusters. However, as noted above, previous studies have shown that the salinity is

the most relevant variable by which to identify layers and because the results were found to be

satisfactory, we did not investigate how scaling the axes might a↵ect the resulting clusters.

2.3.2 Selecting values of input parameters

It remains to choose values for the method parameters. The HDBSCAN algorithm is deterministic;

that is, given the same arrangement of input data and the same value of the mpts parameter, it

will find the same clusters every time. The exact arrangement of data in ⇥0–SP space that we feed

into the algorithm depends on three factors: (1) the set of profiles that we include, (2) the salinity

range that we decide to analyze, and (3) the window width ` used to calculate the local anomaly

of conservative temperature ⇥0 in Equation (2.1). We discussed our method of selecting the profiles

and salinity range previously in Section 2.2. Here, we explain how we select values for ` and mpts.

The results of a clustering algorithm can be judged on the basis of either external or internal

validation. External validation methods involve comparing the clustering results to an external

“ground truth,” while internal validation methods use the data themselves to provide a measure of

quality for the clustering (Moulavi et al., 2014). In this application, external validation would require

detailed labeling, indicating to which layer, if any, each individual point belongs. Such labels could

be determined by a separate method; however, we aim for this method to be broadly applicable

to more than just reproducing previous results. Therefore, we tune our selection of ` and mpts

using Density-Based Clustering Validation (DBCV) (Moulavi et al., 2014) as an internal validation.

DBCV considers good clustering solutions to be those in which the lowest-density regions within the

clusters are still denser than the highest-density regions of the surrounding noise points. It bases the

density estimates o↵ the so-called “mutual reachability distance,” defined for each pair of points to

be the maximum " of either point or the distance between the two, whichever is largest. For more

details, see Moulavi et al. (2014).

To evaluate algorithm performance, we performed a parameter sweep through di↵erent values of

` and mpts, and present the number of clusters found together with the DBCV scores in Figure 2.3.

For the ` dependence, see Figure 2.3(a), we find a downward trend in the number of clusters as

` increases. DBCV scores tend to be larger in the middle of the ` range, with the highest score
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Figure 2.2: Results from the clustering algorithm with mpts = 170 and ` = 25 dbar run on 53042
data points in the salinity range 34.05–34.75 g/kg from all up-going ITP2 profiles. (a) The data
in ⇥–SP space with dashed lines of constant potential density anomaly (kg m�3) referenced to the
surface. The red box bounds the clusters marked in panels (b) and (d). (b) Profiles 183, 185, and
187 from ITP2 in a limited pressure range to show detail. Each profile is o↵set in SP for clarity. (c)
The spatial arrangement used as input for the algorithm where the gray points are noise and each
color-marker combination indicates a cluster. The same color-marker combinations are used in each
panel and the markers in panels (c) and (d) are at the cluster average for each axis. (d) A subset
of the data in ↵⇥–�SP space with the linear regression line and inverse slope (RL) noted for each
individual cluster and with dashed lines of slope ↵⇥/�SP = 1.

occurring for ` = 25 dbar. We may also note that the choice of ` shapes a large-scale feature of the

⇥0–SP plots. In Figure 2.2(c), a zig-zag pattern of increasing, rapidly decreasing, and then increasing

again ⇥0 is seen in the range of SP ⇡ 34.63–34.72 g/kg. This pattern is due to the presence of the

AW subsurface temperature maximum in ⇥ profiles; it disappears when ` is small while becoming

more exaggerated for larger ` (see Section A.2). Based upon previous studies of staircases in the

Canada Basin during this time period (Timmermans et al., 2008; Lu et al., 2022), we estimated the

typical layer thickness to be 5 m in height, or 5 dbar in pressure, though we found similar results

for estimates of 0.5–7.5 dbar (see Section A.2). The choice ` = 25 dbar, where the largest DBCV

score occurs, thus corresponds to approximately five times the typical layer thickness. This value is

found to be large enough that the staircases are completely smoothed out yet small enough that the

features outside the analyzed pressure range do not significantly a↵ect the moving average.

We now turn now to mpts, which under the default settings of HDBSCAN sets the minimum

number of points in a cluster (Campello et al., 2013). If the value of mpts is too small, the algorithm

may erroneously split a cluster that represents one layer into multiple, smaller clusters, while a

too-large value of mpts would lead to the incorrect grouping of multiple discrete layers into a single
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Figure 2.3: A parameter sweep showing the number of clusters found (solid lines) and DBCV (dashed
lines) in ITP2 as a function of (a) 27 di↵erent values of ` with mpts = 170 and (b) 44 di↵erent values
of mpts with ` = 25 dbar.

Input Parameters Results
Study to Number of Salinity Number of

ITP Reproduce Profiles Range (g/kg) ` (dbar) mpts Clustersa DBCV
2 Timmermans et al. (2008) 121 34.05–34.75 25 170 36 (31) 0.3034
3 Lu et al. (2022) 766 34.21–34.82 25 580 43 (40) 0.3862

aThe first number is the total number of clusters found by the algorithm. The second is the number of clusters
that were neither outliers in IRSP

nor RL.

Table 2.2: The values of parameters used to run the clustering algorithm over both datasets.

cluster. Note that this upper bound on a reasonable mpts depends greatly on the number of data

points given to the algorithm; the more data points the algorithm is given, the higher the value of

mpts can reasonably be set. In the parameter sweep of Figure 2.3(b), we find the number of clusters

decreases rapidly until mpts ⇡ 60, then decreases at a much slower rate, while the highest DBCV

scores occur for intermediate values of mpts. As with `, we choose the value of mpts having the

highest DBCV score. For ITP2, this led to our selection of mpts = 170.

Running HDBSCAN on ITP2 using the procedure outlined above with the choices ` = 25 and

mpts = 170 leads to the clusters presented in Figure 2.2. Following the same parameter selection

process for ITP3, we obtain the values ` = 25 dbar and mpts = 580 (see Section A.4). Table 2.2

summarizes our input parameter choices and the resulting number of clusters and DBCV values for

both ITP2 and ITP3.

2.3.3 Evaluating the clustering algorithm results

The DBCV score gives a measure of quality for the clusters in terms of their densities of points

relative to the surrounding noise. However, DBCV does not take into account the properties of the

clusters that we expect from the physical situation of staircases, such as their spans in ⇥ and SP

or how far they are from neighboring clusters. We therefore present two metrics to help predict

whether each cluster will accurately represent what we expect from layers within staircases: the

lateral density ratio RL and the normalized inter-cluster range IR.

The relative strength of horizontal variations in salinity and temperature along the ith layer is

described by the lateral density ratio
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Ri

L
=
��SP

↵�⇥
, (2.2)

where � = ⇢�1@⇢/@SP is the haline contraction coe�cient, ↵ = �⇢�1@⇢/@⇥ is the thermal expansion

coe�cient, and �SP and �⇥ are the variations in salinity and temperature, respectively, along a

particular layer (Radko, 2013; Bebieva & Timmermans, 2019). We estimate RL by finding the inverse

slope of the best-fit line through each cluster in ↵⇥–�SP space (see Figure 2.2(d)) (Timmermans et

al., 2008; Chen, 1995). These lines are found using Orthogonal Distance Regression, which is more

suitable than ordinary least squares in our case due to the presence of variability along both the ↵⇥

and �SP axes (Winton, 2011); however, both methods yield similar results (not shown).

RL quantifies the relative importance of SP and ⇥ for the density of that layer (Timmermans

et al., 2008; Bebieva & Timmermans, 2019) and is known to be directly related to the ratio of

the vertical fluxes of salinity and heat within a staircase (Bebieva & Timmermans, 2019). Note

that the lateral density ratio RL is distinct from the density ratio, R⇢, which is defined using the

same equation (2.2) but with �SP and �⇥ taken in the vertical direction (Shibley et al., 2017).

The relative constancy of RL values across time and space has been interpreted as reflecting the

remarkable degree of lateral coherence of staircase layers (Toole et al., 2011). The values of RL

have also been shown to be remarkably similar across neighboring layers (Timmermans et al., 2008).

Therefore, if a value of RL lies significantly outside of the general range of its neighbors, the cluster

either reflects the erroneous grouping of multiple layers into a single cluster, or else a physical

merging or splitting of layers as discussed in Section 2.4.2.

We also define a measure of the relative spread of a variable, such as temperature or salinity,

within a cluster in comparison with the di↵erences between adjacent clusters. Ordering the clusters

sequentially in density, the normalized inter-cluster range for the ith cluster is given by

IRi

v
=

vi
max

� vi
min

min(|v̄i � v̄i�1|, |v̄i � v̄i+1|) , (2.3)

where i � 1 and i + 1 denote the adjacent clusters to either side, v is the variable of interest (i.e.,

pressure, ⇥, or SP ), vi
max

and vi
min

are the maximum and minimum values of the variable v within

cluster i, and v̄i denotes the mean value of v for cluster i. The numerator is the span between

the maximum vi
max

and minimum vi
min

within cluster i. The denominator is the span between the

mean of that cluster v̄i and the mean of either the cluster above or below, whichever is smaller. For

clusters at either end of the variable space, we take the denominator to be the span between the

mean of the ith cluster and that of its single neighbor.

The inter-cluster range IRv therefore quantifies the range of a given variable, v, within a cluster

in comparison with the range to the nearest neighboring cluster. For a staircase, the salinity values

within one layer are generally well separated from the salinity values of the neighboring layers (Lu

et al., 2022). Therefore, we expect that the clusters with large IRSP could represent a part of a

single layer that was erroneously divided into multiple clusters by the algorithm, or entirely di↵erent

physical features, as discussed in Section 2.4.3.

In order to evaluate clusterings, we choose a method to detect outliers in both IRSP and RL.

We define outliers as points more than two standard deviations from the mean, or, equivalently,

with a z-score greater than two (approximately corresponding to a p-value of 0.05 for a two-tailed

test). More sophisticated outlier detection methods exist and, while this approach is not guaranteed
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Figure 2.4: The average (a) pressure, (b) ⇥, and (c) SP for the points within each cluster for each
profile (profile cluster average, PCA) across time. The clustering algorithm was run with mpts = 580
and ` = 25 dbar on 678575 data points in the salinity range 34.21–34.82 g/kg from all up-going ITP3
profiles.

to find all erroneous clusters, outliers in IRSP and RL give us an indication, based on simple and

measurable physical characteristics, of particular clusters which may not represent a single, full layer

and which therefore require closer inspection. Although such outliers could be manually adjusted to

better capture single, complete layers, we take the approach of disregarding them when calculating

statistics and trends.

2.4 Results

Now having presented the HDBSCAN clustering algorithm, our process of selecting ` and mpts, and

metrics to identify erroneous clustering, we apply this method to data from ITP2 and ITP3.

2.4.1 Properties of detected layers

As a starting point, we examine the average value of pressure, ⇥, or SP for each cluster found from

profiles collected by ITP3. Inspired by L22, we plot those values over time in Figure 2.4. We find that

the clustering algorithm is capable of tracking individual layers across hundreds of profiles collected

along the 2541 km-long track traced by ITP3 over 382 days. A pattern emerges, where the pressures

of individual layers appear to have more variability than temperature and salinity, consistent with

T08. Moreover, we find that salinity variations within a layer are smaller than the salinity di↵erences

between two neighboring layers, while the opposite is true for pressure and temperature (similar to

L22; see their Figure 3). We find similar results for ITP2 (see Figure A.7).

More quantitatively, we find di↵erences in salinity between clusters are approximately seven times
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cIRp
cIR⇥

cIRSP
d�⇥ (�C) [�SP (mg/kg)

ITP2 8.394 4.087 0.707 0.048 16.5
ITP3 16.641 7.141 0.927 0.050 15.4

Table 2.3: The median normalized inter-cluster ranges and di↵erences between average values of
adjacent clusters for ITP2 and ITP3, calculated after removing outliers with z-score> 2 in the
respective variable.

larger than variations within a cluster. That is, we compute the standard deviation of salinity within

each cluster and find that the median is 2.2 mg/kg, while the median absolute di↵erence between

the average salinity of adjacent clusters is 15.4 mg/kg. This is in agreement with L22 who found

inter-layer salinity di↵erences to be an order or magnitude larger than variations within a layer.

Furthermore, the median normalized inter-cluster ranges (Equation 2.3) in Table 2.3 quantitatively

confirm the qualitative patterns noted by T08 and L22 as cIRp, cIR⇥ > 1 and cIRSP < 1 for both

ITPs, where b. indicates the median. Table 2.3 also contains the median of the di↵erences between

neighboring cluster averages of temperature, d�⇥, and salinity, [�SP , for both ITPs. For ITP3, these

values of 0.048�C and 15.4 mg/kg match those of L22, which are 0.05�C and 17 mg/kg. They also

agree with T08, who reported the the di↵erence in temperature and salinity across interfaces to be

�✓ ⇡ 0.04�C and �S ⇡ 14 mg/kg.

2.4.2 Outliers and splitting / merging layers

As discussed previously in Section 2.3.3, outliers have been identified in the inter-cluster salinity

range IRSP as well as the lateral density ratio RL. Figure 2.5 shows IRSP and RL for both ITPs

with outliers indicated by red circles. We find that these outliers can either be due to erroneous

clustering or indicate the presence of di↵erent physical features such as the splitting or merging of

thermohaline staircase layers, which is a well-known phenomenon (Neshyba et al., 1972; Padman &

Dillon, 1988; Kimura et al., 2015).

We can learn more about these features from the illustrative sets of particular salinity profiles

from ITP2 presented in Figure 2.6. Both sets of profiles span less than a week and we narrow the

displayed pressure ranges so that the individual steps are visible. This figure shows that overall,

the algorithm captures the layered structure very well, marking points within interfaces as noise.

Nevertheless, it is imperfect. Near layer boundaries, the algorithm sometimes includes points from

an interface within a cluster, and sometimes neglects to include points within a layer. Additionally,

as seen in the first profile of Figure 2.6(b) around 236 dbar, the algorithm can also miss layers

entirely, especially when the layer is particularly thin and only present in a small number of profiles.

Occasional issues such as these are to be expected with any automated detection method.

Focusing on ITP2 as an example, we find two outliers in IRSP marked by an orange 4-pointed

star and a green “⇥” in Figure 2.5(a). We can track the same clusters in Figure 2.2(c), indicated

by orange or green dots with a 4-pointed star or a “⇥” at the center of the cluster. They both

have an average SP ⇡ 34.67 g/kg but are separated in ⇥0. A series of individual salinity profiles

associated with these outliers over approximately six days is shown in Figure 2.6(a). We find that

these outliers correspond to a relatively thick single layer that was erroneously split across two

clusters by the algorithm. We attribute this erroneous splitting to the zig-zag pattern in ⇥0–SP

space mentioned in Section 2.3.2 and note that it could be eliminated with a di↵erent selection of
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Figure 2.5: The value of each cluster’s normalized inter-cluster range for salinity IRSP in (a) and (c)
and the lateral density ratio RL in (b) and (d) as a function of the cluster’s average pressure. The
colors and markers for ITP2 in (a) and (b) are the same as the clustering shown in Figure 2.2 and
for ITP3 in (c) and (d), they are the same as shown in Figure 2.4. Markers circled in red indicate
outliers with a z-score greater than 2. In (b), the solid curve is a 2nd-degree polynomial fit (equation
given by the annotation) for the non-outlier points from ITP2 and the dashed curve is the same for
ITP3. In (d), the solid curve is a 2nd-degree polynomial fit (equation given by the annotation) for
the non-outlier points from ITP3 and the dashed curve is the same for ITP2.

`. Although we can attribute these outliers in IRSP to an artifact of the method, there are other

instances where such outliers indicate the presence of physical features, as we will discuss in Section

2.4.3.

Next, we examine outliers in RL, defined in Equation 2.2, for ITP2, marked by red circles in

Figure 2.5(b). These outliers correspond to clusters that appear to have multiple layers grouped

together. For example, the outlier cluster marked by an orange half-circle in Figure 2.5(b) can be

seen in Figure 2.2(c) spanning SP = 34.054–34.159, a much wider range than any other cluster.

Similarly, in Figure 2.2(c), the outlier cluster marked by a purple star spans SP = 34.233–34.261

and clearly encompasses what should be two distinct clusters. Some outliers in RL are the result

of erroneously clustering multiple layers together. On the other hand, the particular feature of the

outlier cluster marked by a teal “⇥”, centered around 232 dbar with RL = �12.7 in Figure 2.5(b),

indicates splitting or merging. As highlighted in Figure 2.6(b), it typically spans multiple stair steps,

but the last few profiles it only spans a single, larger step. This illustrates that we can use outliers in

RL to identify clusters that are not single, complete layers and to find instances of potential splitting

or merging.
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Figure 2.6: Individual SP profiles from ITP2, specifically chosen to show the examples of outlier
clusters in IRSP and RL highlighted by the bands of color. (a) Profiles 67, 69, 73, 75, 81, 83, 91,
93, 97, and 99, collected between August 31–September 5, 2004. (b) Profiles 87, 89, 95, 97, 99, 101,
103, 105, 109, and 111, collected between September 3–7, 2004. The colors and markers are the
same as the clustering shown in Figure 2.2. The gray dots are noise points and the black lines show
the profiles. Each profile is o↵set in SP for clarity.

2.4.3 Remnant intrusions revealed by temperature

Direct comparisons with other layer detection methods can also be used to identify interesting phys-

ical features. To demonstrate this, here we directly compare average layer characteristics computed

by HDBSCAN to those reported by L22, both using data from ITP3. L22 used 758 profiles from

ITP3 while we used all 766 available up-going profiles. Based on the gaps in Figure 3 of L22, we

believe that the eight missing up-going profiles are from July 2006. Figure 2.7 shows the average ⇥

and SP for each cluster found in our study and by L22 based on the values in their Table A1 after

converting ✓ to ⇥. We initially find 43 clusters and, after eliminating outliers in IRSP and RL as

described in Section 2.3.3, we find 40 clusters. While L22 identified only 34 thermohaline layers, we

find close agreement between those and the clusters we found for SP . 34.74 g/kg. Below where

this salinity occurs in the water column, we find five more clusters than L22.

The di↵erences between these two results appears to be related to the presence of remnant

intrusions, which display features of both staircase layers and intrusions, and are thought to represent

an intermediate stage in staircase formation. Such features are known to appear near the bottom of

staircases around the AW core and have been analyzed in detail by Bebieva & Timmermans (2019).

They are characterized by homogeneous salinity, which leads the method of L22 to treat them as

single layers. However, they have a temperature structure that is inverted (warmer above colder)

compared to the typical gradient within a thermohaline staircase. The warm and cold sections are

distinct enough for the clustering algorithm to split the structure into multiple clusters, each of

which is homogeneous in salinity and relatively homogeneous in temperature. Figure 2.8 highlights

an example of a remnant intrusion where the method of L22 gives results that di↵er from ours;
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Figure 2.7: The average ⇥ and SP for the 34 layers found by Lu et al. (2022) in black dots and for
the 43 layers found in our study using data from ITP3 and the same colors and markers as in Figure
2.4. Clusters circled in red are outliers in either IRSP or RL.

the layer spanning approximately 320–340 dbar is constant in SP , but decreases in ⇥ with depth

and is divided into two clusters using the clustering method. These two clusters can be found in

Figure 2.5(c), indicated by the blue “Y” centered around 337 dbar with IRSP = 23.8 and the orange

“+” centered around 348 dbar with IRSP = 79.3.

Such remnant intrusions exist between the active intrusions of the AW core and the staircase

layers of the lower halocline waters. Staircases may be formed from intrusions but such features have

distinctly di↵erent patterns of heat and salt flux than double-di↵usively driven staircases (Bebieva &

Timmermans, 2019). The disagreement between our results and those of L22 highlights the di�culty

of detecting remnant intrusions. While neither method is designed to automatically distinguish

between these and staircase layers, the method presented here o↵ers the opportunity to identify

them when evaluating outlier clusters. Moreover, although Table 2.3 supports the suggestion by L22

that salinity is the most appropriate variable by which to identify staircase layers, having shown

that a layer identified by L22 is in fact a remnant intrusion illustrates why it remains important to

consider temperature as well.
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Figure 2.8: Individual profiles 313, 315, 317, 319, and 321 from ITP3, collected between November
10–12, 2005, specifically chosen to show the example of a temperature inversion highlighted by the
bands of color. The colors and markers of the individual points are the same as the clustering shown
in Figures 2.4 and 2.7. The gray dots are noise points. The black lines on the left of each pair are
the SP profiles while the red lines on the right are for ⇥. Each profile is o↵set in both SP and ⇥ for
clarity.

2.4.4 Dependence of RL on pressure

Lastly, we revisit Figure 2.5(b,d) where the distribution of points suggest a dependence of RL on

pressure. This is in contrast to previous studies which have found a constant RL for the depth

range we analyze (Timmermans et al., 2008; Toole et al., 2011; Bebieva & Timmermans, 2019).

For ITP2 in panel (b), after removing the five outliers indicated across panels (a) and (b), we use a

second-degree polynomial fit to find RL = �3.81⇥10�4p2+0.24p�39.85, where p is pressure, with a

coe�cient of determination R2 = 0.67. For ITP3 in panel (d), we remove the three outliers in panels

(c) and (d) then find quite the similar dependence of RL = �3.38 ⇥ 10�4p2 + 0.24p � 43.29 with a

coe�cient of determination R2 = 0.84. Comparing these two curves in Figure 2.5(b,d), we find most

of the di↵erence can be explained by a downward shift of roughly 20 dbar in the upper water column

to 50 dbar in the lower water column from ITP2 to ITP3. Note that a second-degree polynomial

was chosen here as a simple parameteric model to capture the apparent non-linear dependence of

that RL on pressure.

By contrast, T08 concluded there was no vertical dependence of RL. They analyzed data from

ITP1 through ITP6, which sampled the Canada Basin during the period from 2004 to 2007, and

found a constant value of RL = �3.7 ± 0.9. Their Figure 6(a) shows five values of RL for ITP2

that range from -3.5 to -3.0. While Bebieva & Timmermans (2019) found that RL changes below

the depth of the temperature maximum, those authors also found in their Figure 3(b) that RL

is constant in the depth range we consider in this study. Additionally, the presence of remnant

intrusions does not explain the di↵erence in our results as the pressure dependence of RL is evident

in the upper part of the water column where they are absent. Although we find that RL depends on

pressure, our results agree with those of T08 on the magnitude of RL, as we find the mean value for

all non-outlier clusters of ITP2 to be �3.55 with a standard deviation of 2.24, and so we compare

more of our results to those of T08.

We reproduce several of the figures from T08 in Figure 2.2. The combinations of color and

markers for the clusters are the same in Figures 2.2, 2.5, and 2.6. In Figure 2.2(a), we plot data

from ITP2 in ⇥–SP space, reproducing Figure 5(a) from T08. Those authors noted that points

from each particular layer clustered along lines in ⇥–SP space that cross isopycnals and when we

mark the clusters found by the algorithm, those layers become visually distinct. Figure 2.2(b) shows
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profile 185 in the same depth range as Figure 4 from T08, plus the up-going profiles taken by ITP2

immediately before and after. This illustrates that the clustering algorithm is indeed marking points

within those particular layers as in the same cluster and points within interfaces as noise. It also

shows that the clustering algorithm tracks the same layers across neighboring profiles even though

the pressure at which those layers are found varies. Figure 2.2(c) shows the ITP2 data on the axes

used by the clustering algorithm. In Figure 2.2(d), we plot the clusters bounded by the box in

Figure 2.2(a) in ↵⇥–�SP space, reproducing Figure 6(a) from T08. The dashed lines of slope 1

correspond to isopycnals as �⇢ = �↵�⇥ + �SP . Overall, the panels in Figure 2.2 are close visual

matches for those particular figures in T08.

After examining the di↵erences between the two in detail (see Section A.6), it remains unclear

why the values of RL we found for clusters in ITP2 data di↵er from T08. However, we believe that

the quantitative agreement in magnitude for the values of RL and the qualitative match between the

clustering results and the features in Figure 2.2 show that the clustering method reproduces those

results from T08. Overall, these findings suggest that the clustering algorithm is indeed revealing a

dependence of RL on pressure in the data we analyzed from ITP2 and ITP3. Since RL is directly

related to the ratio of the vertical derivatives of the vertical fluxes of salinity and heat within a

staircase (Bebieva & Timmermans, 2019), this could indicate a pressure dependence of that ratio.

2.5 Discussion

In this study, we have presented a method based on the HDBSCAN clustering algorithm to both

detect and connect well-mixed layers in thermohaline staircases across Arctic Ocean hydrographic

data. HDBSCAN has previously been successfully applied to sets with millions of data points

(Logan & Fotopoulou, 2020). As the comparison with results from previous studies was favorable,

this suggests that this method may produce trustworthy results when applied to datasets with larger

numbers of points. This study contributes to a growing set of examples of clustering algorithms being

used in oceanography (e.g., Koszalka & LaCasce, 2010; Espejo et al., 2014; Maze et al., 2017; C. Ma

et al., 2019; Jones et al., 2019; Houghton & Wilson, 2020; Rosso et al., 2020; Desbruyères et al., 2021;

Sonnewald et al., 2021). The continued and extended use of clustering algorithms in oceanography

and related fields is an important development, since discovering and detecting features in all manner

of datasets becomes more challenging as they grow ever larger.

Special attention was given herein to the identification of outliers using parameters output by

the method itself. We found that clusters which are outliers in the lateral density ratio RL often

indicate multiple layers that are erroneously clustered together, but can also highlight potential

instances of layer splitting or merging. By introducing the normalized inter-cluster range IRv, we

quantitatively showed that the pressure and temperature values vary more within a layer than the

di↵erence between the values of neighboring layers, while the opposite is true for salinity. Because

we know that the practical salinity SP values in a particular layer are well separated from those of

neighboring layers, we identified clusters with notably large values of IRSP as likely to be either

only part of a layer that was erroneously split by the algorithm or a remnant intrusion. This study

also suggests that there may be a pressure dependence of the lateral density ratio RL, seen in both

ITP2 and ITP3. The reasons for this dependence are unclear and are worthy of further study.

Following the model presented by Bebieva & Timmermans (2019), the ratio of vertical fluxes of heat

28



and salt could be recalculated using this more complex vertical dependence of RL. This could then

be compared to simulations (Yang et al., 2022) and parameterizations (Radko et al., 2014; Shibley

& Timmermans, 2019) of the flux ratio in other models. However, in order to verify these with

observations, vertical resolution fine enough to resolve the interfaces between layers, that is, finer

than provided by ITPs, would be needed.

The method we presented here has certain advantages in particular circumstances. For example,

all of the other methods referred to herein (Timmermans et al., 2008; Shibley et al., 2017; van der

Boog, Otto Koetsier, et al., 2021; Lu et al., 2022) require setting one or multiple thresholds on

gradients in temperature, salinity, or density which are used to identify sections of profiles where

layers may be present. However, choosing reasonable values for these thresholds requires precise prior

knowledge of the staircase properties, which may not be available before identifying staircases in that

particular region and time period. The method presented here requires the selection of a salinity

range in which to search and an estimate of the typical layer thickness which can be determined from

a brief look at a dataset or from previous studies. To evaluate the clusters, a selection of an outlier

detection method is required. In addition, while the other techniques require resolution high enough

to resolve small-scale vertical gradients, the method presented here—which does not distinguish

between individual profiles—only requires that a su�cient number of data points be available in

order to detect clusters. Therefore, this technique could potentially find staircases in datasets that

have too low a resolution to resolve the steps in any particular profile. While, in this study, we use

all data points available after filtering, we found that subsampling profiles to every second, third,

or fourth point yielded similar results (see Figure A.8). Finally, the method automatically connects

layers across profiles. While L22 used an automated connection method, it still required subsequent

adjustments to the layers to be made manually. Consequently the method presented here could be

readily applied to datasets with larger numbers of points and used to examine the large-scale, lateral

properties of coherent layers in thermohaline staircases.

The clustering algorithm has several limitations. It cannot be used to examine sets of profiles

spanning temporal or spatial scales larger than those on which stairs are known to be coherent.

This method considers all profiles simultaneously, and it is not applicable to identifying stair steps

in datasets of independent individual profiles. While this method could be applied on a profile-

by-profile basis, each profile would require a separate selection of mpts which itself becomes highly

sensitive with a small number of points to cluster. Moreover, as the clustering algorithm does

not consider profiles individually, it may miss layers which are only present in a small number

of profiles, as may occur especially for layers that split or merge. Finally, although the clustering

method captures the overall structure of the staircase layers well, it sometimes miscategorizes points,

especially near the boundaries between layers and interfaces.

The method presented here could be used in conjunction with other staircase detection methods.

For example, if a di↵erent detection method were used to identify which data points in a collection of

profiles are in layers, the clustering algorithm could be run on just the layer points to automatically

connect the layers across profiles. Additionally, the clustering algorithm could be used on a large

collection of datasets to identify which subsets contain staircases; then a more specifically tuned

staircase detection method could be used on just that subset, reducing the amount of time-consuming

analysis.

Because the method can be scaled to datasets with a larger number of points, a natural extension
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would be to apply it to a dataset with profiles from many ITPs. Furthermore, although we have

focused on identifying upper-ocean Arctic thermohaline staircases, it could also be useful in other

oceanic regimes. Staircases with steps on the order of 50 m thick have been observed in the Arctic

between depths of 2000–3000 m (Timmermans et al., 2003), much deeper than ITPs measure, while

the Argo network of autonomous profiling floats has captured staircases in regions all over the

world (van der Boog, Dijkstra, et al., 2021). Since this method does not assume a consistent

vertical resolution across the profiles, it could be run on a mix of data from di↵erent types of

instruments, assuming they operated within the same region and time period. This method could

also be adjusted to identify other structures that appear in ⇥–S space such as di↵erent types of

layers or water masses, or even structures that can appear in di↵erent spaces such as ⇥–O2 (Rosso

et al., 2020). On the technical side, another topic of future study would be to adapt this method

to automatically distinguish between well-mixed layers and intrusions. However, when using this

clustering algorithm to specifically search for staircase layers, we recommend avoiding the bottom

of the thermocline around the AW core where remnant intrusions are known to appear (Bebieva

& Timmermans, 2019). Finally, there may be methods other than the DBCV validation process

used herein that may be better able to guide the choice of parameters, potentially improving the

detection fidelity.
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Chapter 3

Tracking Beaufort Gyre staircase

layers across 17 years

Abstract In the Beaufort Gyre Region of the Arctic Ocean, thermohaline staircases exist in the

pycnocline with water from the Pacific Ocean above and from the Atlantic below. Observations

show that both the Pacific and Atlantic waters in this region have warmed significantly in the past

several decades. However, to the best of my knowledge, no studies have investigated the evolution

of individual steps in thermohaline staircases for a period longer than four years. Here, I use an

unsupervised clustering algorithm to identify staircase layers in 17 years of hydrographic profiles

from 2005–2022. I find that these layers are sinking at a rate of 2.24 ± 1.97 dbar per year, a rate

which matches the net downwelling for the Beaufort Gyre, suggesting that the layers passively follow

the evolution of isopycnals. I also find that the layers are warming at a rate on the order of 0.1�C

per decade and that there is a robust trend of this rate decreasing from the top to the bottom of

the staircase. From this, I calculate the average net heat flux for each layer which is positive in the

upper part of the staircase and negative near the bottom, summing to a net 0.054 W/m2, matching

the magnitude of estimates from previous studies. I find the average layer thickness to be 1.55 dbar

and that thicknesses increase with depth at a rate of (2.53 ± 0.40) ⇥ 10�2 dbar per dbar, which

are also consistent with previous studies. However, I also find that the thickness of layers are likely

either slightly thinning or not changing in time. While thermohaline staircases have been known to

be present in the Arctic Ocean for over 50 years, these results show that individual staircase layers

can remain coherent over long periods and how they change in time. Replication code can be found

at https://github.com/scheemik/Staircase Clustering Detection Algorithm v2.

3.1 Introduction

As was introduced in Section 1.1, the Canada Basin of the Arctic Ocean contains a layer of warm,

salty water from the Atlantic Ocean which occupies depths between 250–800 m (Timmermans et

al., 2008). This mass of Atlantic Water (AW) is the most significant reservoir of heat in the Arctic

Ocean (Richards et al., 2022) and, as many have noted, contains enough heat to melt all Arctic sea

ice if it were somehow able to reach the surface (Maykut & Untersteiner, 1971). It has also been

warming significantly since the mid-twentieth century (Carmack et al., 1997; Polyakov, Pnyushkov,
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& Timokhov, 2012). Above the AW, and above the pycnocline, exists a layer of water originating

from the Pacific Ocean, typically between depths of 30–100 m (Timmermans et al., 2018). The heat

contained in this layer is also significant, estimated to be able to melt around a meter of sea ice if

it were able to rise to the surface (Timmermans et al., 2018; MacKinnon et al., 2021). The Pacific

water is warming as well, with its heat content doubling from 1987 to 2017 (Timmermans et al.,

2018; Dosser et al., 2021).

Between these two water masses, lie the thermohaline staircases. As mentioned in Section 1.1,

staircases have appeared in profiles of the pycnocline for decades including those taken at Ice Island

T-3 (1969-1971) (Neshyba et al., 1971, 1972; Neal & Neshyba, 1973), during AIWEX (1985) (Padman

& Dillon, 1987, 1988, 1989), and during SHEBA (1997–1998) (Shaw & Stanton, 2014).

Many studies have commented on this persistent presence of staircases in the Arctic Ocean. From

a set of 12 hydrographic profiles spanning 1990–2001, Timmermans et al. (2003) found staircases

to be persistent feature of the deep Canada Basin (below 2400 m). Both Shibley et al. (2017) and

van der Boog, Dijkstra, et al. (2021) show the presence or absence of staircases in each ITP profile

taken in the Arctic between 2004–2013 and 2004–2020, respectively. However, these studies do not

connect specific, individual layers across di↵erent profiles, either because such an e↵ort was irrelevant

to the study or because there was a lack of temporal resolution (Timmermans et al., 2003).

Several studies have noted the remarkable lateral coherence of layers. Using data from ITPs

1-6, Timmermans et al. (2008) argued that clusters which appear in Temperature–Salinity indicate

that individual layers appear across the profiles analyzed which span approximately 800 km. A

similar argument was made by Bebieva & Timmermans (2019). However, neither study analyzed

how specific layers changed over time.

While there have been studies that have tracked the evolution of specific layers in the Arctic

Ocean, all have only been across relatively short time spans. From a 30-hour series of temperature

profiles taken every four minutes at Ice Island T-3, Neshyba et al. (1972) were able to trace specific

layers and analyze their fine-scale temporal evolution. Using temperature profiles from AIWEX,

Padman & Dillon (1988) were able to track layers along a 20-hour time series of 96 profiles profiles

spanning 600 m. However, for a set of 25 profiles spanning 9 days, they were unable to track

individual layers due to the temperature variation between profiles. Polyakov, Pnyushkov, Rembe,

et al. (2012) used high-resolution profiles from moorings to track six interfaces between staircase

layers in the pycnocline across a year-long period between 2003–2004. Similarly, Ménesguen et al.

(2022) used moorings to trace layers across a year-long period from 2006–2007. Lu et al. (2022)

analyzed thousands of profiles from ITPs between 2005–2009, tracking 34 layers throughout that

four year period. They also found the average depth of staircases to be between 200–350 m and noted

that this is similar to the average depths Neal et al. (1969) found in 1969 (220–340 m), suggesting

that the staircase layer depth range may have remained stable across those decades.

Here, I use a clustering method based on HDBSCAN, which I introduced in Section 2.3.1, to

automatically detect thermohaline layers in the Canada Basin of the Arctic Ocean and track their

evolution across 17 years of hydrographic profiles. Being able to analyze the evolution of staircase

layers in the Arctic Ocean is key as stratification of this region is not well-represented in global

climate models (Timmermans & Pickart, 2023). This chapter is organized as follows. First, in

Section 3.2, I describe how I selected and filtered the data for this study. In Section 3.3, I analyze

the top and bottom boundaries I define for the section of the water column I analyze, introducing
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Figure 3.1: (a) A map of the Arctic with a red bounding box designating the Beaufort Gyre Region
(BGR) as defined by ST22. (b) A zoomed-in view of the BGR with each of the 15,202 profiles used
in this study marked in a color indicating the date on which it was taken. The dotted-dashed lines
indicate the bathymetry contours.

the methods I use to correct for spatial variations and find trends in time. I then apply HDBSCAN

to year-long time periods and connect layers across time. With this dataset of staircase layers, in

Section 3.4 I present results of the properties of the detected layers and how they evolve in time.

Finally, in Section 3.5, I discuss the implications of my results, evaluating the performance of the

methods used, and o↵er possible directions for future studies.

3.2 Data

In this study, I analyze ITP profiles within the Beaufort Gyre Region (BGR) which, following Shibley

& Timmermans (2022) (hereafter referred to as ST22), I define to span 130–160�W and 73–81.5�N

(see the red box in Figure 3.1). The maximum distance any two points could span in this region is

1168 km. To avoid the wake problem discussed in Section 1.2, I keep only the up-going profiles.

The first ITP to take measurements in the BGR was ITP2 on 2004/8/19. However, ITP2 was

only in operation for 40 days leaving a gap of 320 days until ITP1 took its first measurement in

the BGR on 2005/8/15. Since the deployment of new ITPs has generally occured around August

15th of each year (see Figure B.1), I choose to divide the time series into year-long periods, each

starting and ending on August 15th. At the time of analysis, there was insu�cient data available

after 2022/8/15, so I choose to analyze only the profiles within the 17 years between 2005/8/15 and

2022/8/15.

Similar to ST22, I filter out profiles that do not cover a su�cient depth range, keeping only

profiles which extend past 400 dbar. This significantly reduced the number of profiles to analyze

because some ITPs employed a particular repeating pattern of observation, taking a number of

shallow profiles, then a deep profile, then taking a number of shallow profiles again. For example,

ITPs 105, 113, and 114 had approximately every 1 in 8 profiles extending down to around 800 dbar

while the others stopped around 250 dbar. Figure 3.1 shows the locations of the 15,202 profiles

analyzed in this study that are within the BGR and the chosen 17-year period, after filtering out
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profiles which do not extend deeper than 400 dbar.

As discussed in Section 2.2, the clustering method of finding staircase layers should not be used

on a dataset which spans larger temporal or spatial scales than those which staircase layers are

known to be coherent. As I will discuss in Section 3.5, this study establishes new maximum known

coherence scales for these layers. However, as detailed in Section 3.3.3, I only perform clustering on

subsets of the data that respect the previously-known coherence scales.

Similar to Section 2.2, I choose to use slightly di↵erent variables than the studies to which I

compare my results, notably ST22. Here, I work with the directly measured quantity of pressure,

as opposed to depth which is derived from pressure. Again, the conversion between the two is

linear, and does not a↵ect my results or comparisons. As recommended by TEOS-10 (McDougall &

Barker, 2011), I use conservative temperature ⇥ and absolute salinity SA, as opposed to potential

temperature ✓ and practical salinity SP . As the results from Chapter 2 did not change significantly

using SP vs. SA (see Section A.1), it is reasonable to expect the results I present here would not

change significantly if using di↵erent versions of the variables. After selecting the set of profiles and

variables I will use, I then define the bounds of the section of the water column in which I will detect

staircase layers.

3.3 Methods

3.3.1 Defining the bounds of the water column

Only certain depths of the water column contain staircases. Lu et al. (2022) (hereafter referred to as

L22) noted that this section of the pycnocline is bounded above by the Lower Halocline Water (LHW)

and below by the Atlantic Water (AW), the cores of each defined to be, respectively, the depths

at which salinity is 34.1 and at which the subsurface temperature is maximum. These are similar

to the bounds used by ST22 who noted that some care must be taken to avoid selecting erroneous

subsurface temperature maximums near the surface, and so I first mask out all temperature values

that occur at pressures less than 100 dbar.

With the data that remains, for each profile, I set the AW core to p(⇥max), the pressure at which

the temperature is maximum, and the LHW core to p(SA ⇡ 34.1), the pressure at which the salinity

is closest to 34.1. When searching for the LHW core, I disregard pressures below the AW core to

ensure the LHW core is located physically higher in the water column. When detecting and analyzing

the staircase layers, I use only the data whose pressures occur between p(SA ⇡ 34.1) < p < p(⇥max).

3.3.2 Correcting for spatial distributions

Figure 3.2 shows maps of the values of p(SA ⇡ 34.1) and p(⇥max), the pressure contours of the LHW

and AW cores, for the 15,247 profiles within the BGR and my chosen 17-year period. Both contain

a similar bowl-shaped geographic distribution to that noted by L22. Similar plots for salinity and

temperature are in Figure B.2 and, for the LHW core, there is obviously no spatial distribution in

salinity nor is there any discernible spatial pattern in temperature. In the AW core, both salinity

and temperature increase from the southeast to northwest, again matching the patterns seen by

L22. Because the clustering method described in Section 2.3 takes only temperature and salinity
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Figure 3.2: Maps showing the pressures at which the (a) LHW and (b) AW cores occur for each of
the 15,247 profiles in the BGR. The color bars are oriented such that values physically higher in the
water column are closer to the top of the plot.

into account, the spatial distributions in pressure will not a↵ect its results. They may, however,

a↵ect the calculation of temporal trends of the clusters.

The BGR has seasonal wind forcing due to ice cover, causing downwelling in the summer and

upwelling in the winter (Timmermans & Toole, 2023). However, over the past few decades, these

oscillations coexisted with a cumulative downwelling of around 2–5 m/yr (Meneghello et al., 2018;

Proshutinsky et al., 2019; Timmermans & Toole, 2023). The spatial distributions in Figure 3.2 span

hundreds of dbar with 17 years of data. Because the overall trend in time is orders of magnitude

smaller than the trends across space, I first perform a correction for the horizontal variations,

implicitly assuming the general spatial distributions do not change in time.

To correct for spatial distributions, I fit a two-dimensional polynomial over latitude and longitude

for a given variable v (e.g., p, SA, ⇥, etc.) using the least squares function from the linear algebra

module of the Numpy Python library. In order to capture the large-scale features of the spatial

distribution in Figure 3.2 while remaining relatively simple, I compute the 10 coe�cients up to third

power in latitude (�) and longitude (�), fitting the general formula

vfit = A + B�+ C�2 + D�3 + E�+ F��+ G�2�+ H�2 + I��2 + J�3. (3.1)

I hereafter refer to this process as finding the polyfit2d for a set of data.

In order to correct the trends in pressure across time, I found the polyfit2d on pressure for

the LHW and AW cores. Figure 3.3 panels (a,e) show histograms of the pressures of the LHW and

AW cores, respectively. Panels (b,f) show the same distribution of pressures for each core as seen

in Figure 3.2, but on top of the polyfit2d heat maps, the coe�cients for which are in Table 3.1.

Both use the same color maps such that the fit can be evaluated by noting the di↵erence in color

between the heat maps and the overlying data points. Evaluations can also be made with the maps

of residuals in panels (c,g) which are the di↵erences for each point between its value and the value of

the polyfit2d at the same latitude and longitude. Panels (d,h) show the histograms of the residuals

for the LHW and AW, respectively. The limits on the colorbars in (c,g) and the vertical axes in
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Figure 3.3: The top row shows the LHW core and the bottom row shows the AW core. (a,e)
Histograms of the pressures. (b,f) Maps of the pressure values of the core for each profile overlaying
a heat map of the polyfit2d of the pressure. The red stars mark the location of the highest pressure
value in the polyfit2d. (c,g) Maps of the residuals, pressure values minus the polyfit2d. (d,h)
Histograms of the residuals. All vertical axes and color bars are oriented such that values physically
higher in the water column are closer to the top of the plot.

Core A B C D E F G H I J

LHW �4.67 ⇥ 10
4

220.46 �2.26 1.88 ⇥ 10
�3

2184.32 �14.60 0.04 �41.59 0.17 0.28
AW 4.76 ⇥ 10

4
181.66 0.35 6.79 ⇥ 10

�3 �1527.95 �4.02 0.03 15.95 0.09 �0.01

Table 3.1: The coe�cients for the polyfit2d of pressure, following Equation (3.1).

(d,h) have been chosen such that they cover the same number of dbar as the corresponding panels in

(a,b,e,f), as well as oriented such that the values towards the top of the plots represent values that

are physically higher in the water column (e.g., a residual of -60 is 60 dbar above the polyfit2d at

the same latitude and longitude).

L22 found that the deepest region of this shape corresponds to the center of the Beaufort

Gyre, which they defined as 74.3�N, 144.2�W. Within the BGR, I found the deepest part of these

polyfit2d spatial distributions to be 74.6�N, 150.2�W for the LHW and 73.0�N, 147.7�W for the

AW, as marked by red stars in Figure 3.3(b,f). These are, respectively, 181.86 km and 181.32 km

from the center defined by L22.

As can be seen in Figure 3.3(c,g), the residuals have little to no discernible spatial distributions.

Between panels (a) and (d), the standard deviation of the pressures of the LHW core went from 38.32

dbar to 30.54 dbar while between (e) and (h), the standard deviation of the AW went from 45.19

dbar to 40.98 dbar. These reductions in the standard deviations and the lack of a spatial pattern

in the residuals implies that the polyfit2d is indeed removing the overall spatial distributions in

pressure.

Figure 3.4 shows the trends in pressure and residuals from the polyfit2d on pressure for both

the LHW and AW cores. I calculated the trends using the ordinary least-squares regression. It is

evident that the variation in pressure decreases when finding the residuals. The slope of the LHW
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Figure 3.4: Trends in pressure over time for the (a,b) LHW and (c,d) AW cores. Panels (a,c) show
the trends before and panels (b,d) show the trends after subtracting their respective polyfit2d.
The blue lines are the 30-day moving average. The vertical red dashed lines appear on every August
15th to denote the boundary between time periods.

(AW) core across time for pressure, 3.42 ± 0.05 dbar/yr (5.87 ± 0.05 dbar/yr), decrease slightly

for the residuals, 2.91 ± 0.04 dbar/yr (5.32 ± 0.04 dbar/yr), where the ± values are the standard

errors of the estimated slope. The R2 values also similar between the slopes of the pressures and

the residuals, being 0.480, 0.512, 0.699, and 0.698 for panels (a), (b), (c), and (d), respectively.

While the trends in time do not change much after correcting with the polyfit2d, the trends

are di↵erent between the LHW and AW cores. Both the LHW and AW cores have a cumulative

downwelling rate that agrees with previous studies, however the AW core is sinking faster than

the LHW core. This di↵erence could be happenstance or indicative of some general behavior of

the water column. One possibility is that deeper layers are sinking faster than shallower layers,

stretching the pycnocline. Another possibility is that new layers are forming at the bottom, just

above the AW core. If, at the same time, layers are disappearing at the top, this could be thought

of as an “escalator” motion. By identifying individual staircase layers and analyzing their trends, I

will be able to evaluate whether the sinking pycnocline contains a stretching staircase, an escalator,

or something in between.

3.3.3 Clustering each time period

As previously mentioned, the clustering method does not distinguish between individual profiles

and should not be applied to a set of data that span larger scales than across which staircases have

been known to be coherent. The longest any previous study has tracked an individual thermohaline

staircase layer in the Arctic is four years (Polyakov, Pnyushkov, Rembe, et al., 2012; Lu et al.,

2022). For consistency, I split the data into consecutive year-long periods, of which there are 17, each

starting and ending on August 15, which is generally around when new ITPs have been deployed

(see Figure B.1). This not only guarantees each dataset respects the known temporal coherence

scale, but also reduces the maximum size of any particular dataset to a manageable quantity. The

37



Figure 3.5: Parameter sweeps in mpts for (a) BGR1415 and (c) BGR1516. The results of clustering
(b) BGR1415 and (d) BGR1516 with the chosen values of mpts 1050 and 500, respectively, before
relabeling the cluster ID’s.

dataset for each period contains every profile taken within the BGR during that time filtered to

pressures between p(SA ⇡ 34.1) < p < p(⇥max). Note that this eliminates the 45 profiles where

p(SA ⇡ 34.1) = p(⇥max), reducing the total count to 15,202 profiles. I name each period BGRXXYY

where XX and YY are the last two digits of the years the period spans. For example, BGR0506

contains the profiles taken between 2005/8/15 and 2006/8/15. On all plots for this work with time

on the horizontal axis, I mark each August 15 with vertical red dashed lines. Table 3.2 summarizes

Figure B.1, listing the ITPs, the number of profiles, and the number of data points for each period.

In Section 2.3.2, I describe how I selected the parameters `, the length of the running average

window in dbar, and mpts, the minimum points per cluster. As described in Section A.2, the value of

` does not significantly a↵ect the results of the clustering, except for near the bottom of the staircase

where the influence of intrusions is greatest. While choosing a smaller value of ` may negate the

ability to identify the presence of remnant intrusions in the results, I do not analyze such features

in this work. Therefore, I select a smaller value of ` than in Chapter 2 to reduce the zig-zag pattern

across the high-salinity region of ⇥0–SA space. In this chapter, I use a value of ` = 2.5 dbar for

every period.

As was in the case in Section 2.3.2, I use density-based clustering validation (DBCV) as a

metric to guide my selections of mpts. For each dataset, I performed a parameter sweep, running

HDBSCAN across a range of mpts from 100 to 2500, recording the DBCV and number of clusters

for each clustering result. Examples of such parameter sweeps for BGR1415 and BGR1516 are

shown in Figure 3.5(a,c). I see the same general trend in number of clusters as in Figure 2.3(b),

rapidly decreasing for small values of mpts then decreasing much more slowly as mpts grows larger.

Generally, I followed the same procedure in selecting mpts as before, choosing the value with the

highest DBCV as long as it does not occur below the values at which the number of clusters is

rapidly decreasing. For BGR1415, this led me to choose mpts = 1050 where DBCV was maximum

at 0.2537; this particular clustering is shown in Figure 3.5(a). However, for several periods, this

approach led to clusters which aligned poorly with staircase layers. In these cases, I chose a value
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Period ITPs present
Profiles
used

Total
points

Noise
points

mpts

Number of
clusters

DBCV

BGR0506 1, 3 1,425 1,152,866 616,986 650 75 0.2869
BGR0607 1, 3, 4, 5, 6, 8, 13 1,518 1,267,893 739,831 1100 68 0.2539
BGR0708 4, 5, 6, 8, 13, 18, 21, 30 1,454 1,126,688 623,000 1300 56 0.3172
BGR0809 8, 11, 18, 21, 25, 30 573 509,054 509,054 450 65 0.1615
BGR0910 21, 32, 33, 34, 35 774 628,730 400,559 300 80 0.1797
BGR1011 33, 41, 42, 43 743 621,887 446,750 500 78 0.1193
BGR1112 41, 52, 53, 54, 55 880 709,249 406,165 1300 54 0.2632
BGR1213 41, 62, 64, 65 597 473,227 278,529 1100 49 0.2256
BGR1314 64, 68, 69, 70, 77, 78, 79, 80 611 493,043 228,962 1350 47 0.2910
BGR1415 77, 79, 80, 81, 82, 84, 85, 86, 87 1,907 1,600,412 947,319 1050 79 0.2537
BGR1516 82, 85, 86, 88, 89 377 290,354 170,627 500 64 0.1772
BGR1617 97, 99 397 318,621 194,903 200 82 0.2130
BGR1718 97, 100, 101, 108 470 344,856 190,093 550 67 0.1973
BGR1819 103, 104, 105, 107, 109, 110 684 615,743 410,198 700 68 0.1433
BGR1920 105, 113, 114, 117, 118 488 443,676 268,088 750 61 0.1791
BGR2021 113, 114, 120, 121 1,063 967,756 707,763 1150 68 0.1719
BGR2122 120, 121, 122, 123 1,241 1,180,791 722,087 1150 63 0.1823
Total 60 di↵erent ITPs 15,202 12,744,846 – – – –

Table 3.2: For each time period, summaries of the data used and clustering parameters.

of mpts that was lower than that with the maximum DBCV, yet a prominent value of DBCV with

respect to the mpts, using the fact that the optimal value of mpts is roughly proportional to the

number of data points. For example, the maximum DBCV of the parameter sweep for BGR1516 in

Figure 3.5(c) was 0.1857 at mpts = 2150. However, I chose to use mpts = 500 which gave a prominent

value DBCV of 0.1772 compared to nearby points and was at a similar order of magnitude in mpts

compared to other periods with a similar order of magnitude number of data points (see Table 3.2).

The chosen clustering for BGR1516 is shown in Figure 3.5(d).

3.3.4 Connecting across time periods

After clustering each time period, I then began the process of connecting the clusters between

di↵erent time periods which represent the same layer. When running the HDBSCAN algorithm,

each cluster is assigned an integer, starting at 0, as an ID. However, the order in which these IDs

are assigned is based upon the processes of building the hierarchy tree described in Section 2.3.1,

not upon the clusters’ positions in ⇥0–SA space. As was shown in Section 2.4.1, the salinity of the

layers is more stable than the pressure or temperature. Therefore, I first reassign the cluster IDs to

be in order of the clusters’ average SA. This is the ordering shown in the coloring of the clusters in

Figure 3.5(b,d). While I use only seven distinct colors, each distinct cluster has a distinct ID.

However, as noted in Section 2.4.2, the clustering algorithm can sometimes erroneously group

multiple layers into a single cluster or erroneously divide one layer into multiple clusters. There

is no guarantee these errors will be consistent across di↵erent time periods and therefore there is

no guarantee that, after ordering the cluster IDs in each period with increasing average SA, the

cluster IDs for a particular layer will match across time periods. For example, the purple cluster in

Figure 3.5(d) around 34.21 g/kg does not correspond to the purple cluster in panel (b) around 34.19

g/kg because the yellow cluster in panel (d) around 34.18 g/kg clearly encompasses two layers.
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To correct for this, I manually relabeled the cluster IDs using several guiding principles. I

ensured that clusters with the same ID across di↵erent periods had approximately the same average

value of SA. When a cluster in a particular period clearly encompassed more than one layer, I

gave that cluster it’s own distinct ID if the majority of other periods did, in fact, distinguish those

layers. I avoided relabeling two clusters within the same period to the same ID unless it was

abundantly clear that the clustering algorithm divided one layer into multiple clusters. For values

of SA above approximately 34.9, the number of clusters increased and their spans in SA decreased,

often overlapping with each other. This part of the staircase is very near the AW core, a region

known to have intrusions (Bebieva & Timmermans, 2019). Because I am not analyzing intrusions

in this study, I did not make an attempt to connect across time periods for clusters with an average

SA & 34.9 g/kg, simply assigning them IDs with values of 120 or larger. The result of this relabeling

can be seen in Figure 3.6. A version of the same plot before the relabeling can be seen in Figure B.3.

3.3.5 Defining outlier clusters

In 2.3.3, I describe how I evaluate the validity of individual clusters based on their lateral density ratio

RL and normalized inter-cluster range in salinity IRSA . I determine that outliers in RL represent

either clusters where multiple layers have erroneously been grouped together or a physical splitting

or merging of layers. Outliers in IRSA represent either parts of a single layer erroneously split into

multiple clusters or intrusion features. In this study, I wish to analyze the properties of single, full

layers and therefore chose to disregard such clusters when calculating statistics and trends.

Here, I mark clusters as outliers in a di↵erent manner than in Chapter 2. First, I consider all

clusters with IDs 120 or higher (i.e., clusters with an average SA & 34.9) to be outliers as I did

not attempt to relabel these clusters to connect them across time periods. With those remaining, I

define outliers in either RL or IRSA based upon the modified z-score

Mi =
b(xi � bx)

MAD
(3.2)

where b = 0.6745 is a normalization parameter assuming a normal distribution (Rousseeuw & Croux,

1993), xi represents the value of RL or IRSA for a particular cluster, bx is the sample median of all

the clusters, and MAD is the median of the absolute deviations about the median

MAD = mediani{|xi � bx|} (3.3)

where mediani represents taking the median across all values of |xi � bx| (Rousseeuw & Leroy, 1987).

I use the modified z-score here as it is based upon estimators that are robust to small sample sizes

and I follow the recommendation of Iglewicz & Hoaglin (1993), marking points as outliers when

|Mi| > 3.5. In Figure 3.7, I mark such outliers in IRSA with blue and in RL with red. Hereafter, I

refer to clusters that are outliers in neither as “regular clusters.”

3.4 Results

Having used the clustering algorithm to identify layers in the 17 year-long periods and subsequently

connected the layers across those time periods, I can analyze their various properties and trends.
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Figure 3.6: The salinity across all time periods, colored by cluster. Noise points are marked in black.
The blue and pink triangle markers denote the values of the LHW and AW, respectively, for each
profile. The vertical red dashed lines appear on every August 15th to denote the boundary between
time periods. The IDs for clusters in BGR0506 (BGR2122) are shown by the colored numbers on
the left (right) of the plot.

3.4.1 Properties of detected layers

By connecting the clustering results of each year-long time period, I find that I can track individual

layers across 17 years and the entire BGR, spanning up to 1168 km. In Figure 3.6, I plot these

results in salinity against time. Blue and pink triangle markers denote the values of the LHW and

AW cores, respectively, for each profile. I use seven other colors to distinguish between the di↵erent

clusters and mark the IDs for clusters in BGR0506 (BGR2122) with numbers in the corresponding

colors on the left (right) of the plot. Noise points are marked in black and the vertical red dashed

lines mark every August 15th, the boundaries between time periods.

Similar plots with vertical axes of pressure, temperature, and density anomaly can be seen

in Figures B.4, B.5, and B.6. From these, it can be seen that individual layers vary most in

pressure and then, in decreasing order, temperature, density anomaly, and salinity. This pattern is

reflected quantitatively in the median values of the normalized inter-cluster ratio as cIRp > cIR⇥ >
cIR�1 > cIRSA (see Table 3.3). In Section 2.4.1, I found the same relative magnitudes for pressure,

temperature, and salinity, which matches with the patterns noted in previous studies (Timmermans

et al., 2008; Lu et al., 2022). For density anomaly, it follows that cIR⇥ > cIR�1 > cIRSA as �1 is
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Variable Pressure (p) Salinity (SA) Temperature (⇥) Density Anomaly (�1)
cIRv 365 4.49 80.7 18.8
c�v 18.3 dbar 9.80 ⇥ 10�3 g/kg 5.74 ⇥ 10�2 �C 7.60 ⇥ 10�3 kg/m3

bvspan 176 dbar 2.51 ⇥ 10�2 g/kg 0.77 �C 6.25 ⇥ 10�2 kg/m3

c�
v

26.9 dbar 4.50 ⇥ 10�3 g/kg 7.72 ⇥ 10�2 �C 6.46 ⇥ 10�3 kg/m3

Table 3.3: A summary of median values for each variable v. The b. symbol indicates the median
across each regular cluster (neither an outlier in IRSA nor RL), �v represents the distance between
the average values in v for neighboring clusters, vspan is the distance between vmax and vmin for a
cluster, and �

v
is the standard deviation of a cluster in v.
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Figure 3.7: The value of each cluster’s (a) normalized inter-cluster range for salinity IRSA and (b)
lateral density ratio RL as a function of the cluster’s average pressure. The colors and numbers
for each cluster are the same as in Figure 3.6. The circles mark clusters that are outliers in the
respective variable. Note that the vertical domain is zoomed in to show detail and, while there are
clusters with average pressures below 355 dbar, all of those clusters have been disregarded in further
calculations.

influenced by both ⇥ and SA. I once again conclude that salinity is the most appropriate variable

by which to identify any particular layer in the staircase, in agreement with L22.

3.4.2 Values of IRSA and RL

As described in Section 3.3.5, I mark outliers in IRSA and RL, following a similar procedure as

was used in Chapter 2. However, I use the modified z-score defined in (3.2) and the recommended

threshold of 3.5 (Iglewicz & Hoaglin, 1993). In Figure 3.7, I mark outliers in IRSA with blue and

outliers in RL with red. I keep this same coloring scheme for the other plots in this chapter. As

mentioned above, I disregard clusters with IDs � 120 when calculating statistics and trends. In

plots, I mark these clusters as outliers in both IRSA and RL, however few of these clusters appear

in Figure 3.7 as I have restricted the vertical domain to show detail.

When a cluster has IRSA < 1, this means that its range of salinity values does not overlap

with those of the clusters above and below. In this study, only Cluster 91 has IRSA < 1, as can
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Dataset RL �
RL

Polynomial fit of RL(p) R2

BGR all -10.62 4.15 �2.39 ⇥ 10�4p2 + 0.11p � 22.08 0.04
ITP2 -3.55 2.24 �3.81 ⇥ 10�4p2 + 0.24p � 39.85 0.67
ITP3 -3.86 2.41 �3.38 ⇥ 10�4p2 + 0.24p � 43.29 0.84

Table 3.4: Comparing values of the lateral density ratio RL from this study to that of Chapter 2.
The means and standard deviations of RL along with the second degree polynomial fits of RL in
pressure p from Figures 3.7(b) and 2.5(b,d), as well as the coe�cients of determination for those
fits.

be seen at 238 dbar in Figure 3.7(a). This is in contrast to Figure 2.5(a,c) where roughly half the

clusters have no overlap with their neighbors. I attribute this to the manner in which I relabeled

the cluster IDs, described in Section 3.3.4. When it was clear that a cluster for a particular time

period clearly encompassed more than one layer which were clustered separately in most other time

periods, I would give that cluster its own unique ID. For example, in Figure 3.7(a) with a cluster

average pressure of 232 dbar, Cluster 2 has IRSA = 154, indicating a high degree of overlap in SA

with at least one of its neighboring clusters. This overlap can be seen in Figure 3.6 as Cluster 2 is

the topmost layer in BGR1112–BGR1314, colored dark red. In each of those three periods, a single

cluster encompassed a significant range of SA and I assigned it an ID of 2. This is in contrast to

BGR1415 where the clusters which I assigned IDs of 0, 4, 6, and 7 cover approximately the same

range in SA, but were separated by the algorithm. These clusters can also be seen in BGR0506–

BGR0607. This extreme example of a phenomenon common across the clusters which illustrates

why there are so few clusters with IRSA < 1. However, it is a common occurrence and because the

outlier detection method I employ seeks relatively extreme values, I conclude that outliers in IRSA

still correspond to clusters that do not represent single layers.

In Section 2.4.4, I discuss how results in Chapter 2 suggest a dependence of RL on pressure.

Following that section, I plot a second-degree polynomial fit through the clusters that are not outliers

in RL in Figure 3.7(b) to find RL = �2.39 ⇥ 10�4p2 + 0.11p � 22.08. While the coe�cients in this

equation are close to those shown in Figure 2.5(b,d), the coe�cient of determination, R2 = 0.04, is

much lower (see Table 3.4). The mean lateral density ratio for the 76 regular clusters, RL = �10.62,

is also significantly di↵erent from the results of Chapter 2 and from Timmermans et al. (2008), who

reported a mean value of �3.7 ± 0.9. It is unclear whether this supports or negates the conclusion

from Chapter 2 that RL has a dependence on pressure. The similarity in the coe�cients of the

polynomial fit is striking, however it has a very low R2. The di↵erence in magnitude of RL could

be, similar to IRSA , attributed to my particular method of connecting across time periods.

3.4.3 Spatial variability

Before I find the trends in time for each cluster, I first correct for spatial distributions, as explained

in Section 3.3.2. As an example, Figure 3.8 shows maps and histograms of the points within Cluster

63 for pressure, salinity, and temperature. The maps in panels (a–c) show the individual points

plotted on top of the contour of the polyfit2d for the corresponding variable. The general bowl-

shaped pattern in pressure matches very closely with that of the LHW (see Figure 3.2(b)) with the

location of the minimum pressure in the polyfit2d only 46.14 km away at 74.22�N, 149.58�W. The

direction of increase of salinity shown in Figure 3.8(b), from the southwest to the northeast, matches

that of the AW (see Figure B.2(c)), albeit with a gradient about one third as steep. Note, however,
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Figure 3.8: Maps of (a) pressure, (b) salinity, and (c) temperature for Cluster 63 over the corre-
sponding polyfit2d for each variable. The red star in (a) is at the location of the minimum of the
polyfit2d: 74.22�N, 149.58�W. Histograms of (d) pressure, (e) salinity, and (f) temperature for
Cluster 63, showing both the original and the residual values for each variable.

For Cluster 63 Pressure (dbar) Salinity (g/kg) Temperature (�C)
Mean 256 37.5798 -0.3610

Standard Deviation 27.4 0.0032 0.0591
polyfit2d Standard Deviation 17.1 0.0031 0.0453

Table 3.5: The properties of the histograms for Cluster 63 shown in Figure 3.8. The means of all
polyfit2d versions were zero.

that the range of variations of salinity is extremely narrow around the mean value.

In Figure 3.8(c), there is a clear pattern of increasing temperatures from the northwest to the

southeast, opposite in direction yet equal in magnitude to that of the AW (see Figure B.2(d)). I

attribute this to what L22 identified as the influences of the di↵erent water masses above and below,

the LHW and AW. That is, layers closer to a particular water mass will tend to resemble those

masses in spatial variability. Indeed, I do find the patterns of temperature across each layer change

from top to bottom, most notably around SA ⇡ 34.7 g/kg (see Figure B.7). The reason for why this

influence is more evident in temperature than in salinity I attribute to temperature’s higher rate of

di↵usion.

The histograms in Figure 3.8(d-f) show both the distributions of the original points overlayed

on the distributions of the residuals for each variable. Upon making these spatial corrections, the

standard deviations of the distributions in each variable decreased, although only by a significant

amount for pressure (see Table 3.5). This again implies that taking the polyfit2d is removing the

overall spatial distribution.

3.4.4 Trends in time

After using polyfit2d to correct for spatial distributions in the clusters, I then find the trends in

time using the ordinary least squares method. Note that I did not account for the fact that di↵erent

clusters cover di↵erent time spans. Not all clusters appear in every time period and, especially for
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Variable cdtp (dbar/yr) [dtSA (g/kg/yr) ddt⇥ (�C/yr) ddt�1 (kg/m3/yr)
Original 3.43 �3.39 ⇥ 10�4 1.18 ⇥ 10�2 �1.04 ⇥ 10�3

Residuals 2.24 �2.42 ⇥ 10�4 5.73 ⇥ 10�3 �6.24 ⇥ 10�4

Table 3.6: A summary of median trends for each variable v across all regular clusters, before and
after taking the residuals with polyfit2d.
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Figure 3.9: For all clusters, the trends in time of the polyfit2d residual for (a) pressure, (b) salinity,
and (c) temperature with respect to the cluster average of salinity. A blue “+” denotes clusters that
are outliers in IRSA and a red “⇥” denote clusters that are outliers in RL, as was indicated in
Figure 3.7. All outliers were ignored when calculating the fit lines which have (from left to right)
R2 values of -0.328, 0.071, and -0.789. The blue and pink triangle markers denote the values for the
LHW and AW, respectively.

clusters that only appear in a few periods, the trends are much more susceptible to influence from

extreme values. An example of these trends can be seen for Cluster 63 in Figure B.8 where, just

as it was for the LHW and AW, the slopes decrease after finding the residuals. This pattern holds

across all the clusters as can be seen in Table 3.6 where the median trend over time for each variable

decreases after taking the residuals.

In Figure 3.9 I plot the trends in time, corrected by polyfit2d, for each cluster in pressure,

salinity, and temperature against the cluster average of salinity. I have marked clusters with a blue

“+” and a red “⇥” to denote clusters that are outliers in IRSA and RL, respectively, as was shown

in Figure 3.7. Here, I have given all clusters the same markers for clarity however, a version of this

figure where the markers denote which cluster is which can be seen in Figure B.9. I mark the trends

in the respective variables for the LHW and AW in blue and pink triangles, respectively.

Ignoring all clusters that are outliers in either IRSA or RL, I found the linear fit of these trends

as a function of the cluster’s average salinity to be dSA(dtp) = �3.10 ± 1.04 dbar/yr/(g/kg),

dSA(dtSA) = (2.44 ± 3.99) ⇥ 10�4 (g/kg)/yr/(g/kg), and dSA(dt⇥) = (�3.99 ± 0.36) ⇥ 10�2

�C/year/(g/kg). The R2 values are -0.328, 0.071, and -0.789, respectively. I refer to these as

compound trends as they are trends in a particular variable (noted on the vertical axis) of the

trends in time for a particular variable (noted on the horizontal axis). I do not include the LHW or

AW when calculating compound trends. A summary of the compound trends for each combination

of variables, before and after taking the residuals can be found in Table B.1.

For the regular clusters, the pressure trends in time decrease going down the water column,

meaning the deeper layers are sinking more slowly than the upper layers. This can be seen in
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Figure 3.9(a) and holds true no matter which variable is on the vertical axis. This is the opposite

of what one might assume from solely the trends for the upper and lower boundaries; the AW is

sinking more quickly than the LHW. Indeed, there is a transition around SA = 34.9 g/kg (or 355

dbar, or 0.5�C) between the trends in the regular clusters and the LHW decreasing with depth to

the trends in the outlier clusters with IDs � 120 and the AW increasing with depth. This transition

does not necessarily represent a physical phenomenon as these particular outlier clusters were not

carefully connected across time periods. However, it is striking to note that the trend of the AW

nevertheless falls along the same line.

As can be seen in Figure 3.9(b), the trends of salinity over time are scattered around zero and

the compound trend is insignificant. This holds true for compound trends in salinity across vertical

axes of pressure, temperature, and density anomaly. In each case, both before and after taking

the residuals, the standard error is larger than the slope and the R2 value is less than 0.085 (see

Table B.1). This is as expected because salinity is the main factor for identifying layers within

each period and connecting them across di↵erent periods. By virtue of this identification process, it

would be unlikely to find the salinity within clusters to be changing over time. The same expectation

holds with the LHW, which is identified as the point in the water column with salinity closest to

34.1 g/kg. However, it is notable that the AW, which is identified as the point with the maximum

temperature in each profile, has a negligible trend in salinity over time as well.

In Figure 3.9(c), there is a significant compound trend in the trends of temperature over time

with warming trends near the top decreasing and even transitioning to cooling near the bottom.

The significance of this trend will be discussed in context of heat flux in Section 3.4.6. It should be

noted that the trend for temperature over time for the AW indicated in Figure 3.9 is only for the

point at which temperature is maximum, and does not represent the trend in the temperature of

the Atlantic Water layer as a whole. In general, the AW has been warming significantly over the

past half-century (Carmack et al., 1997; Polyakov, Pnyushkov, & Timokhov, 2012).

3.4.5 Layer thicknesses

The vertical thickness of layers in Arctic thermohaline staircases have long been observed to be on

the order of meters (Padman & Dillon, 1987; Timmermans et al., 2008). While many laboratory

studies have seen the formation of layers (Huppert & Linden, 1979; Fernando, 1989; Guo et al., 2016),

to my knowledge, no studies have noted whether the thickness of an individual layer changes over

long periods of time. Here, I calculated layer thickness for each cluster on a per-profile basis. That

is, for each cluster, I analyzed each profile, finding the maximum and minimum value of pressure

within that cluster and within that profile, and taking the thickness to be the di↵erence between

the two.

In Figure 3.10(a), I plot all these values for all regular clusters as a function of salinity. I do

not include values equal to zero as these simply indicate there was only one point for a particular

cluster in a particular profile. While I do find thicknesses of up to 20 dbar for the lower layers, I

have restricted the horizontal axis to show detail. A version of this plot spanning a larger horizontal

domain and with the points colored by cluster can be found in Figure B.10. There is a structure to

the distribution of layer thicknesses that comes from the manner in which the data was recorded.

The vertical resolution of ITPs is ⇠ 25 cm, and so values of layer thickness tend to fall around

integer multiples (i.e. 0.25 m, 0.5 m, 0.75 m, etc.).
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Figure 3.10: The thicknesses (in dbar) of the detected layers. (a) The non-zero thickness values
against salinity of each regular cluster for every profile in the BGR. While there are thicknesses of
up to 20 dbar, axes bounds are limited here to show detail. For all clusters, the (b) cluster average
of layer thickness and (c) trends of percent change in layer thickness over time with respect to
the cluster average of salinity. The values in (c) are calculated by taking the trend in time for the
cluster’s non-zero thicknesses then dividing by that cluster’s average thickness shown in (b), however
are highly uncertain, see text for explanation. A blue “+” and a red “⇥” denote clusters that are
outliers in IRSA and RL, respectively. All outliers were ignored when calculating the fit lines which
have R2 values of 0.609 for (b) and 0.041 for (c).

Figure 3.10(b) shows the average thickness for each cluster. The mean of these cluster average

thicknesses is 1.55 dbar with a standard deviation of 1.53 dbar, matching the ranges of thicknesses

reported in previous studies for this region (Padman & Dillon, 1987; Timmermans et al., 2008;

Shibley et al., 2017; Lu et al., 2022). As these layers span the entire BGR, approximately 1000 km

across, they have an aspect ratio on the order of 106, again in agreement with previous studies

(Timmermans et al., 2008; Toole et al., 2011; Lu et al., 2022).

There is also a trend of increasing thickness for layers deeper in the water column. In Fig-

ure 3.10(b), I find a trend in cluster average thickness of 4.43 ± 0.67 dbar/(g/kg) (R2 = 0.609).

When plotted against pressure, this becomes a trend of (2.53±0.40)⇥10�2 dbar/dbar (R2 = 0.591).

If I instead fit a line to all thicknesses from all clusters against pressure shown in Figure 3.10(a), I

find a slope of (1.431±0.006)⇥10�2 dbar/dbar (R2 = 0.475) which is the same order of magnitude.

In the ocean, one dbar is almost exactly equivalent to one meter. Therefore, this rate of increase

in layer thickness with respect to depth matches that of Padman & Dillon (1987), who reported a

change of around 1.1 ⇥ 10�2 m/m using data from AIWEX in 1985. Shibley & Timmermans (2019)

reported a trend of 0.12 ± 0.01 m/m from analyzing data from ITP13 from August 2007 to August

2008. That slope is an order of magnitude larger than (4.14 ± 0.04) ⇥ 10�2 dbar/dbar, the slope I

find with a linear trend through the layer thicknesses I detected from just ITP13. I attribute this

di↵erence mainly to the fact that I include layer thicknesses from deeper in the water column, but

also to the fact that Shibley & Timmermans (2019) found their reported slope by first binning the

data into 0.5 m increments (see Figure B.11). While the magnitude of the slope I found may not

agree in this case, the overall trend does follow the consensus that layer thickness generally increases

with depth (Neal et al., 1969; Guo et al., 2016; Shibley et al., 2017; Lu et al., 2022). I do find a

similar geographic distribution to ST22, with the highest mean layer thicknesses in the southeast of

the region (see Figure B.12).

There are predictions that, as the AW continues to warm, staircase layers will be thinner (Shibley

& Timmermans, 2022). However, as seen in Figure 3.10(c), the trends of percent change in layer
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thickness over time have no significant pattern. These trends are calculated in the same manner

as other trends shown above, but have been normalized for each cluster by that cluster’s average

thickness. Note that these trends are more uncertain than trends in other variables. For each cluster,

there is only one value of thickness per profile, meaning the sets of points are smaller and therefore

more susceptible to extreme values. This is in addition to the issue mentioned above, the influence

from extreme values for clusters that do not span the entire time range. Indeed, every regular cluster

with an absolute value of percent change in thickness per year greater than 15% appears in five or

fewer year-long time periods. That is to say, the trend in layer thickness for any particular cluster

in Figure 3.10(c) should not be taken as precise. I present this set of trends to comment on their

overall characteristics. The compound trend of percent change in layer thickness over time against

salinity is 1.86 ± 5.45 %/yr/(g/kg) with R2 = 0.041, implying no pattern along the staircase. For

the identified layers, approximately two-thirds of the trends are negative. From this I conclude

that their thicknesses are somewhere between not changing over time, or becoming slightly thinner

overall.

This does not exclude the possibility that newly forming layers are becoming thinner over time.

However, the methods used in this study exclude the possibility of seeing new layers form. Because

layers are stable in salinity over time and I define the LHW (SA ⇡ 34.1) as my top bound, I cannot

determine whether or not new layers are forming at the top of the staircases. While the lower bound

of the AW is defined in terms of maximum temperature, I did not connect clusters across time

periods above SA ⇡ 34.9. In Figure 3.6, I find layers with salinities just less than this point that are

stable throughout the entire 17 years and so I also cannot determine whether or not new layers are

forming at the bottom bound of the staircase.

3.4.6 Net heat flux

Measuring the heat flux through each layer in a naturally-occurring thermohaline staircase is a

di�cult problem, one which may require specialized observational e↵orts (Polyakov, Walsh, & Kwok,

2012; Stranne et al., 2017). However, with the extensive dataset developed in this study, I can make

estimates of the net heat flux for individual layers. Lacking internal heat sources, a change in

temperature of a layer must be due to the net heat flux through its boundaries. Using the layer

thicknesses and trends in temperature I found for each cluster, I can compute the cluster average

net heat flux with the following

�FH = �h · Cp · dt⇥ · ⇢ (3.4)

where �h is the cluster average layer height (taking 1 dbar ⇡ 1 m), Cp is the cluster average isobaric

heat capacity [J kg�1 K�1], dt⇥ is the cluster average trend in temperature over time [K s�1], and

⇢ is the cluster average density [kg m�3]. I plot �FH against salinity in Figure 3.11. The individual

components can be seen in Figure B.13 where dt⇥, which is also shown in Figure 3.9(c), is the only

component to change sign. Values of net heat flux calculated in this way do not indicate in which

direction heat is moving. However, they do allow estimates of the change in heat of individual layers

which can be compared to estimates of heat flux across staircases made in previous studies.

There is a significant trend of decreasing net heat flux from top to bottom of dSA(�FH) =

(�5.06 ± 0.64) ⇥ 10�3 W/m2/(g/kg) (R2 = �0.677). This holds for vertical axes of pressure and
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Figure 3.11: (a) The average net heat flux for each cluster against salinity. All outliers were ignored
when calculating the fit line which has R2 = �0.677. (b) The cumulative net heat flux of regular
clusters, from the top to the bottom of the staircase.

temperature, with dp(�FH) = (�2.82 ± 0.39) ⇥ 10�5 W/m2/dbar (R2 = �0.641) and d⇥(�FH) =

(�2.43± 0.28)⇥ 10�3 W/m2/�C (R2 = �0.713). There is a zero crossing at SA = 34.6 g/kg (or 278

dbar, or �0.28�C) where clusters go from having positive net heat fluxes above to having negative

net heat fluxes below. This shift can also be seen in the inflection point of the cumulative net

heat flux in Figure 3.11(b) which sums the net heat flux of each regular cluster from the top to

the bottom of the staircase. Here, I have made the assumption that the net heat flux for a layer

is entirely due to the heat flux through its top and bottom surfaces because the extreme aspect

ratio of layers (O(106)) makes the surface area of the edges negligible. The total sum of the regular

clusters’ net heat fluxes is 0.054 W/m2. This is on the same order of magnitude of estimates of heat

flux through staircases from previous studies (Timmermans et al., 2008; Turner, 2010; Guthrie et

al., 2015; Shibley & Timmermans, 2019). However, this is only a small fraction of the estimates of

total ocean-to-sea-ice heat flux (Timmermans et al., 2008).

3.5 Discussion

In this chapter, I have demonstrated how a method based on the HDBSCAN clustering algorithm

can be used to analyze the long-term evolution of thermohaline staircase layers in the BGR. The

clustering method I used was shown in Chapter 2 to automatically detect and connect well-mixed

staircase layers across hydrographic profiles. Many previous studies have remarked on the persistent

presence of thermohaline staircases in the Arctic Ocean since they were first observed in 1969 (Neal

et al., 1969). In this study, I found that individual staircase layers were coherent over the entire

17 years analyzed. Having shown the stability of these layers on the decadal scale, it could be

speculated that individual layers have remained coherent since those first measurements, or even

longer. These structures are not only long-lived, but also large-scale, stretching 1000 km horizontally

with a remarkable aspect ratio which I found to be on the order of 106, as others have previously
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(Timmermans et al., 2008; Toole et al., 2011; Lu et al., 2022). Recently, Ménesguen et al. (2022)

has shown evidence that the lower sections of these staircases have been disappearing. While, in

this study, I did not analyze down to the depths at which these disappearances were noted and I did

not see indications that the layers I identified were disappearing, I did find that layers are changing,

especially in pressure and temperature. As the Arctic continues to warm and the sea ice continues

to retreat, this raises the question as to whether this will also result in the loss of these unique

stratification structures.

Using the normalized inter-cluster range IRv, I confirmed qualitatively that values of pressure

and temperature vary much more within a layer than salinity. In agreement with L22, I conclude

that salinity is the most appropriate variable by which to identify individual layers. To analyze

spatial distributions, I fit di↵erent layers to a two-dimensional polynomial of up to third order in

latitude and longitude. Using these polyfit2d’s, I identified the same bowl-shaped distribution in

pressure noted by L22. I also note that, for the upper staircase, temperatures generally increase

from north to south, from northwest to the southeast in the middle, and from west to east near the

bottom of the staircase, I attribute this to the di↵ering influences of the water masses above (LHW)

and below (AW). By taking the residuals as the original points minus the polyfit2d, I find that

the standard deviations in each layer’s pressure, salinity, and temperature decrease and showed this

process removes the overall spatial distribution.

With a dataset of staircase layers tracked over 17 years and after removing the geospatial vari-

ations with polyfit2d, I was able to note how individual layers changed over time and how that

contributed to the evolution of the staircase as a whole. I found that the LHW is sinking 2.91±0.04

dbar/yr, a rate slower than the AW at 5.32 ± 0.04 dbar/yr. This is in contrast to how I found that

layers at the top of the staircase were sinking at higher rates than those near the bottom, implying

a compression of the staircase. On average, I found layers to be sinking at a rate of 2.24± 1.97 dbar

per year. This is the same magnitude as the approximately 2–5 m/yr cumulative downwelling rate

in the Beaufort Gyre reported by Meneghello et al. (2018) and Proshutinsky et al. (2019). Their

rates are based on the Ekman transport derived from surface stress fields and I note the agreement

with the rates I found from measurements taken beneath the surface. This implies that, overall, the

layers are passively following the movements of the whole water column.

When calculating the average cluster thicknesses, I found a mean value of 1.55 dbar with a

standard deviation of 1.53 dbar, which matches the thicknesses reported in previous studies (Padman

& Dillon, 1987; Timmermans et al., 2008; Shibley et al., 2017; Lu et al., 2022). I also confirmed

the well-reported consensus that layer thickness increases with depth (Neal et al., 1969; Padman &

Dillon, 1987; Guo et al., 2016; Shibley et al., 2017; Shibley & Timmermans, 2019; Lu et al., 2022).

However, the trends in thickness over time that I found did not indicate a definitive pattern and I

conclude that, overall, either layers are not changing in thickness or are becoming slightly thinner.

This leaves open several possibilities to reconcile with the overall compression of the staircase. If

layer thicknesses are stable over time, then the compression could imply that the interfaces between

the well-mixed layers must be decreasing in thickness. This seems unlikely given the interfaces

are generally on the order of centimeters (Padman & Dillon, 1987; Neshyba et al., 1971) and also

the vertical resolution of ITPs is not fine enough to be able to confirm this (Shibley et al., 2020).

Another possibility is that layers are merging, a common process seen in many laboratory studies of

layer formation (Turner, 1965; Huppert & Linden, 1979). However, I do not see evidence of layers
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systematically merging over time. If the layers are indeed thinning over time, then this immediately

reconciles the compression of the staircase.

Previous studies have posited that new staircase layers are formed by intrusions near the bottom

of the staircase (Bebieva & Timmermans, 2019; Boury et al., 2022). While I defined the AW core as

the maximum temperature in each profile, my e↵ective lower bound was the SA ⇡ 34.9 g/kg cuto↵

where I stopped connecting clusters across time periods. I found layers around this cuto↵ to be

stable across the entire 17-year period and therefore cannot determine whether or not new layers

were forming. However, at the bottom of the staircase, there is a gap between the layer represented

by the lowest regular cluster and the AW core. This lowest regular cluster is sinking at a rate

0.56 ± 0.04 dbar/yr, a magnitude slower than that of the AW; the gap between these two layers is

expanding which could leave room for new layers. If layers are disappearing at the top at the same

time, this forms an “escalator” motion. At the top of my domain I have a bound of the LHW at 34.1

g/kg. While the layers near that bound were generally not nearly as well-captured by the clustering

algorithm compared to lower in the column, I do not see clear indications of layers disappearing over

time. While these results do not exclude the possibility of an escalator motion, they do show that

such boundary processes, if present, are not taking place within the salinity range 34.1–34.9 g/kg.

Estimates of heat flux through thermohaline staircases have often used parametrizations that

depend on the jumps in temperature and salinity between neighboring layers (Kelley, 1990; Shibley

et al., 2017; Lu et al., 2022). Making direct measurements of heat flux in this part of the ocean is

di�cult (Polyakov, Walsh, & Kwok, 2012; Stranne et al., 2017). Using the trends in time I found

for the temperature of each cluster, I was able to estimate the net heat flux for each of the detected

layers across the 17-year period. I found a significant trend of dp(�FH) = (�2.82 ± 0.39) ⇥ 10�5

W/m2/dbar with layers near the top of the staircase having positive net heat flux going to layers near

the bottom having negative net heat flux. The point at which the sign changes is around 278 dbar, or

34.6 g/kg, which is also reflected in the inflection point of the cumulative net heat flux. The reason

why this inflection point occurs at this particular location is unclear. It could possibly be related

to the notion put forward by L22 that layers are more prominently influenced by whichever water

mass, LHW or AW, to which they are closest. However, this inflection point does not match the

range in which I saw the lateral spatial pattern of temperature in layers reverse (SA ⇡ 34.7 g/kg).

The cumulative net heat flux for all regular clusters amounts to 0.054 W/m2. This matches with

the magnitude of the estimates from previous studies (Guthrie et al., 2015; Shibley & Timmermans,

2019), however the layer-by-layer analysis reveals a structure in net heat flux within the staircase.

Note that these estimates were made by combining the temporal averages of each component. A

better estimate of the net heat flux could be obtained by combining the components at each point

in the time series, and then evaluating the rate of change.

There are several technical aspects in this study that could be improved upon to employ more

automated decision making which would increase this method’s applicability. These include the

usage of DBCV to guide the selection of mpts for each year-long time period, connecting clusters

across each period, and taking into account the fact that not all clusters appeared in all periods

when calculating trends in time. While each of these issues could be eliminated or minimized by

clustering all 17 years of data at once instead of in year-long periods, I detail the implications of

each below.

Once the dataset to be clustered is determined, HDBSCAN requires only one hyperparameter,
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mpts (Logan & Fotopoulou, 2020). For most time periods, I simply chose the value of mpts which

resulted in the largest DBCV, following the procedure described in Section 2.3.2. However, for a

couple time periods, I instead chose a lower, yet still prominent, value of DBCV to determine mpts as

the clustering with the highest DBCV did not identify staircase layers well. Manually inspecting the

clustering results for di↵erent values of mpts adds time and complexity to the layer detection process,

particularly in this case where 17 di↵erent datasets were independently clustered. One could reduce

the e↵ort needed to select mpts values by restricting the selected salinity range. With less data, there

are fewer reasonable values of mpts to consider. Because salinity values tend to plateau around the

temperature maximum, a small restriction to the maximum salinity bound could greatly reduce the

amount of data to cluster. If only one cohesive dataset needs to be clustered, the extra time needed

to manually select an appropriate value of mpts may not be a significant hindrance. Based on the

results of this study establishing long coherence times for staircases, it would be reasonable to apply

the clustering algorithm once to the entire dataset rather than to each year-long period separately.

However, for applications where many independent datasets would be clustered separately, a more

algorithmic approach to selecting appropriate values of mpts should be sought.

The manual process I used to connect clusters across time periods does not lend itself to repro-

ducibility and cannot be easily scaled to a dataset with more time periods to connect. For some

time periods, certain clusters clearly encompassed more than one layer while in other periods, those

layers were clustered separately. In these cases, I took the approach to give di↵erent cluster IDs

to the erroneously grouped layers in one period and the clusters covering the same layers in other

periods. For this reason, I attribute the fact that I found values of IRSA and RL larger in magnitude

than expected based upon previous studies to this manual connection process. Most clusters had

IRSA > 1, compared to Chapter 2 which had the opposite. While the polynomial fit of RL with

respect to pressure had similar coe�cients to the fit from Chapter 2, the coe�cient of determination

of the fit was very low and the mean value RL for the clusters was significantly larger in magnitude.

Employing a di↵erent process of connecting across time periods, by splitting clusters that erroneously

cover multiple layers for example, could bring those values more in line with expectations. However,

if only one dataset is being clustered or if all datasets to be clustered are unrelated, then there is no

need for a process to connect clusters across time.

Because of the manual process I used to connect clusters across time periods, there were a number

of clusters that appeared in very few of the 17 year-long periods. This had an e↵ect on all the trends

in time I calculated. Clusters which spanned relatively short amounts of time were particularly

susceptible to extreme values unduly influencing the calculated trend. This was particularly notable

when calculating trends in layer thickness as the process of calculating layer thickness reduced the

number of data points for each cluster, increasing the susceptibility to extreme values. This could

be accounted for by using a di↵erent method of regression than ordinary least squares which is

influenced less by extreme values. Another way would be to consider the amount of time spanned

by each cluster when calculating statistics, perhaps marking cluster which cover less than a certain

threshold time span as outliers. As this issue is a result of the manual process of connecting clusters

across time periods, it would also be negated by clustering the entire time span at once.

In this chapter, I have shown that individual layers in thermohaline staircases can remain coherent

across 17 years. With this new temporal coherence scale established, a future study could apply the

clustering method to a single dataset which spans a similarly long time period, negating the need to
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connect layers across di↵erent time periods and eliminating the resulting issue of calculating trends

in time for clusters that only span a fraction of the time period. This, along with a more robust

method of selecting an appropriate value of mpts would make the clustering algorithm a promising

way to detect thermohaline staircases or other similar features in large sets of oceanographic data.
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Chapter 4

Modeling internal wave

propagation through stratified

fluids

Abstract The warm layer below the pycnocline of the Arctic Ocean could dramatically increase

the rate of sea ice loss if it were somehow able to rise to the surface. Internal waves, which can

be generated by wind and ice floes on the surface, can propagate downwards, providing a possible

energy source for heat to mix upward. As ice cover in the Arctic declines, it will be important to

predict how internal waves’ interactions with stratification profiles will change. In this chapter, I

develop numerical experiments to solve the Boussinesq equations of motion using spectral methods.

The results match predictions from theory that, for stratification structures with more than one

mixed layer, there are particular values of the ratio between layer thickness and wavelength where

the wave transmission is much higher than for just one layer. Following Foran (2017), I also use

numerical experiments reproduce the results of laboratory wave tank experiments by Ghaemsaidi et

al. (2016) showing the transmission and reflection of internal waves from either one or two mixed

layers. For these experiments, I measure the vertical energy flux through the stratification and find

that the relative magnitudes of the components match those predicted by theory.

4.1 Introduction

As described in Section 1.1, Arctic sea ice is declining, leaving more of the ocean’s surface exposed

to wind. With this, there is growing concern over how wind-generated internal waves may a↵ect

vertical mixing (Fer, 2014). The majority of the heat in the Arctic Ocean is in the Atlantic Water

(AW) layer, which contains enough heat to melt all Arctic sea ice, if it were to rise to the surface

(Aagaard & Greisman, 1975). Between the cold surface waters and the warm AW below, the intricate

stratification structures of the thermohaline staircases pose barriers to vertically propagating internal

waves.

As shown by the dispersion relation (see Section 4.2.2), when an internal wave encounters a region

where its frequency ! is greater than the buoyancy frequency N , that wave becomes evanescent and
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cannot propagate. As shown in the example of a staircase’s N structure in Figure 4.1(c), N = 0

within each well-mixed layer. Therefore, any internal wave with ! > 0 would encounter many

evanescent layers upon traversing a staircase. Ray theory predicts that an internal wave incident on

an evanescent region will reflect entirely. This prediction is valid when the thickness of the evanescent

region L is large compared to the vertical wavelength �z, however, it becomes unreliable when L ⇠ �z

as the theory’s underlying assumption of slowly-varying media no longer holds (Sutherland, 2010).

If a region in which the wave can propagate again exists beyond the evanescent one and L ⇠ �z,

then the wave will partially reflect and partially transmit through the layer of uniform density in a

process called internal gravity wave tunnelling (Eckart, 1961; Sutherland & Yewchuk, 2004).

Figure 4.1: (a) A typical density stratification profile in the Canadian Basin of the Arctic Ocean
(Rainville & Winsor, 2008). (b) A magnified section of the profile showing the staircase structure.
The red line is a 5 m bin-averaged smoothed density profile. (c) The corresponding profile for the
buoyancy frequency N(z). Reproduced from Figure 1 of Ghaemsaidi et al. (2016).

4.1.1 Previous Work

There is a body of previous work on the interactions between internal waves and double-di↵usive

staircases. Many of these previous studies make di↵ering assumptions and it is still unclear to

what extent internal waves can penetrate such stratification structures in particular circumstances

(Sutherland, 2016).

Sutherland & Yewchuk (2004) analytically solved the transmission rate of small-amplitude in-

ternal waves through one well-mixed layer for the case of a two-dimensional, inviscid, non-rotating,

Boussinesq fluid. They also conducted a wave tank experiment which roughly matched their pre-

dictions of transmission, even when neglecting the e↵ects of dispersion and dissipation.

While Sutherland & Yewchuk (2004) were mainly concerned with applications of wave tunnelling

to the atmosphere, Ghaemsaidi et al. (2016) considered the context of internal waves in the Arctic

Ocean where the presence of double-di↵usive staircases make it necessary to consider the impact

of multiple evanescent layers. Using a weakly viscous linear model, they directly solved for the

transmission rate numerically using bvp4c, a MATLAB implementation of a fourth-order Runge-

Kutta method of solving boundary value problems. Their results show, for particular combinations

of the wave’s angle of incidence ✓ and the ratio between the layer thickness and horizontal wavelength
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L/�x = kxL, a two-layer system exhibits significantly higher internal wave transmission than the one-

layer case. This is due to interference patterns of waves between layers (Wunsch, 2018). Additionally,

they conducted a laboratory wave-tank experiment with which they found remarkable agreement

with the weakly viscous model for both the one and two-layer cases.

Sutherland (2016) extended the theory on transmission through multiple layers, introducing the

e↵ects of rotation but neglecting viscosity entirely. They analytically solved for the transmission

rate of small-amplitude internal waves through an arbitrary number of mixed layers with equal

vertical extents separated by infinitely thin interfaces, establishing bounds on kxL outside which

transmission is negligible. Similar to Ghaemsaidi et al. (2016), Sutherland (2016) implemented

their model to be solved numerically. They used this to show that the qualitative aspects of their

analytical predictions for steps of uniform height L still hold when the steps are uneven, but with a

mean height L.

The models presented by Ghaemsaidi et al. (2016) and Sutherland (2016) are powerful, allowing

for the transmission rate to be calculated directly. However, solving directly for the transmission

rate becomes more and more di�cult as more realistic complexity is added to the system. A di↵erent

approach is evident from laboratory wave tank experiments; the system is set up and allowed to

evolve in time. Here, the transmission rate can be calculated from measurements of the velocity field.

While laboratory experiments are an important aspect of gaining insight, numerical experiments o↵er

a flexible avenue to investigate these systems without the need for large and specialized equipment.

Foran (2017) used a Fourier spectral Boussinesq code developed by Kraig Winters at the Scripps

Institution of Oceanography (Winters et al., 2004) to create a direct numerical experiment (DNS)

of the wave tank experiment conducted by Ghaemsaidi et al. (2016). They qualitatively reproduced

the results for both the one and two layer cases.

4.1.2 Overview

In this chapter, I detail my progress toward understanding how the transmission of internal waves

through stratification structures depends on various factors in situations that more closely represent

the reality of the Arctic Ocean. In Section 4.2, I describe the theoretical basis for the equations of

motion I use in the numerical experiments as well as the processes of complex demodulation and

calculating vertical energy flux which I employ in my analysis. In the codes for this work (available at

https://github.com/scheemik/1D measure T and https://github.com/scheemik/2D boundary

forced waves v2), I use the Dedalus framework for solving partial di↵erential equations which I

describe in Section 4.3. In Section 4.4, I describe the numerical experiments I performed with the

equations collapsed to one dimension, similar to Sutherland (2016). I describe the setup of the

numerical experiments, how I used complex demodulation to calculate the transmission ratios, and

how those ratios compare to the predictions of previous studies. Section 4.5 presents the numerical

experiments I performed with the full, two dimensional equations of motion. I describe how, following

Foran (2017), I recreated the setup of a previous laboratory wave tank experiment by Ghaemsaidi

et al. (2016), hereafter referred to as G16, and compare their results to those of my numerical

experiments as well as analyzing the vertical energy flux. In Section 4.6, I discuss the implications

of the numerical experiments, comparing and contrasting the results from the two di↵erent sets as

well as summarizing my conclusions from these experiments and noting possible avenues for future

work.
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4.2 Theory

In this section, I explain the theoretical basis of my numerical experiments in this chapter including

the equations of motion and the dispersion relation. I also detail the processes of how I separate

the wavefield by the direction of motion using complex demodulation and how I calculate vertical

energy flux.

4.2.1 The Boussinesq Equations of Motion

I base my numerical experiments of internal wave motion on the following formulation of the Boussi-

nesq equations of motion

D~v

Dt
= �2~⌦ ⇥ ~v + ⌫r2~v � rp⇤ + bẑ (4.1a)

r · ~v = 0 (4.1b)

Db

Dt
= r2b � N2(z)w (4.1c)

where D/Dt = @t + ~v · r is the material derivative, ~v = (u, v, w) is the fluid velocity measured

in a Cartesian coordinate system (x̂, ŷ, ẑ), ~⌦ is the rotation rate of the Earth, r2 = @2
x

+ @2
y

+ @2
z

is the Laplacian, r = (@x, @y, @z) is the gradient, p⇤ = p0/⇢0 is the specific pressure where the

prime represents perturbations in all dimensions (t, x, y, z) and ⇢0 is a constant reference density,

b = �g⇢0/⇢0 is the buoyancy,  is the buoyancy di↵usivity, and N2(z) = � g

⇢0
@z ⇢̂ is the background

stratification frequency where ⇢̂(z) represents the background density variations which are taken to

only vary in the vertical direction. Equation (4.1a), an approximation of the Navier-Stokes equation,

is the momentum equation, (4.1b) is the conservation of mass, and (4.1c) is the thermodynamic

equation (Sutherland, 2010; Cushman-Roisin & Beckers, 2011; Lautrup, 2011; Kundu et al., 2015;

Vallis, 2017). While I present a full derivation of these equations in Section C.1, here I briefly

highlight the pertinent underlying assumptions.

I assume the four relevant forces acting on fluid parcels in the system are due to the Coriolis

e↵ect, viscosity, pressure, and gravity. I take gravity to act purely in the vertical direction. I then

take the system to cover less than 10� in latitude. This leads to the ‘f -plane’ approximation where

the Coriolis frequency is constant (2~⌦ = f ẑ) (Sutherland, 2010). I also assume that seawater is an

isotropic, Newtonian fluid whose viscosity is constant across the relevant temperature range.

Generally, the density of water in the ocean only changes by a few percent between the surface

and the bottom and by even less in the horizontal directions (Sutherland, 2010). Therefore, I define

a constant density ⇢0 as being much greater than the background density profile ⇢̄ which is in

hydrostatic balance with the background profile of pressure, @z p̄ = �⇢̄g (Vallis, 2017). This also

leads to the Boussinesq approximation which considers density variations ⇢0 to be negligible unless

they a↵ect buoyancy forces because g is relatively large (Vallis, 2017). It follows that seawater

is nearly incompressible, and so the conservation of mass (4.1b) states that the divergence of the

velocity vanishes (Cushman-Roisin & Beckers, 2011).

I assume there are no internal sources of heat and that the changes to the internal energy are
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only due to the di↵usion of heat and salt (Kundu et al., 2015). Because of the incompressibility

condition, I can assume density has a linear dependence on heat and salt if fluctuations in both are

small (Cushman-Roisin & Beckers, 2011). As detailed in Section 1.1, the di↵erence in the magnitudes

of di↵usivities of heat and salt, T and S , is what gives rise to double di↵usion. However, I do not

attempt to represent the double di↵usive process in my numerical experiments. Rather, I impose a

fixed background stratification and make the simplifying assumption that T = S =  (Cushman-

Roisin & Beckers, 2011).

In terms of the streamfunction

The above assumptions lead to the form of the Boussinesq equations in (4.1). However, for certain

applications, these equations can be expressed more simply in terms of the streamfunction,  . First,

I describe a few additional simplifications I employ for the numerical experiments in Section 4.4.

Assuming the amplitude of the waves is small enough such that the terms proportional to ampli-

tude squared (in this case, the nonlinear advection terms) can be neglected, the material derivatives

collapse to be just time derivatives, D/Dt ! @t. This is known as the small amplitude assumption

(Sutherland, 2010; Cushman-Roisin & Beckers, 2011). Here, I maintain the viscous terms in order

to compare to other studies. By assuming an isotropic fluid and taking the f -plane assumption,

there are no distinctions between horizontal directions. This allows me to always orient the x-axis

along the horizontal direction of wave motion and assume a two-dimensional system (Sutherland,

2010). Additionally, I take the length scale of my system to be small enough that the Coriolis force

is negligible (f = 0). This gives

@xu + @zw = 0 (4.2a)

@tb = �N2(z)w (4.2b)

@tu = ⌫(@2
x
u + @2

z
u) � @xp

⇤ (4.2c)

@tw = ⌫(@2
x
w + @2

z
w) � @zp

⇤ + b. (4.2d)

Because this flow is incompressible and restricted to two dimensions, I can define the streamfunc-

tion  to be (u, w) = (�@z , @x ) (Sutherland, 2010). The system is then reduced (see Section C.1.4

for details) to

@2
t
r2 = ⌫@tr4 � N2(z)@2

x
 (4.3)

where r4 = @4
x

+ 2@2
x
@2
z

+ @4
z

is the biharmonic operator, the square of the Laplacian (Ghaemsaidi

et al., 2016).

4.2.2 Dispersion Relation

When discussing internal waves, it is common to make the assumption of plane waves to derive the

dispersion relation. As mentioned above, this relation can give insight into the general features of

internal wave propagation under certain circumstances. For illustration, I’ll derive here the dispersion
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relation for an inviscid fluid, setting ⌫ = 0 in (4.3). The plane waves assumption states

 (t, ~x) =  0 exp[i(~k · ~x � !t)] (4.4)

where  0 is the amplitude, ~k is the wave vector, and ! is the wave frequency (Sutherland, 2010).

In two dimensions, waves will have horizontal and vertical wavenumbers, kx and kz. Therefore
~k ·~x = kxx+kzz and so the first derivatives of  become @t = �i! , @x = ikx , and @z = ikz 

and the second derivatives become @2
t
 = �!2 , @2

x
 = �k2

x
 , @2

z
 = �k2

z
 . Plugging these in to

the streamfunction equation allows  to be eliminated and results in the dispersion relation

k2
z

= k2
x

✓
N2

!2
� 1

◆
. (4.5)

Two main conclusions can be drawn from this. The first is that changing the sign of kx or

kz does nothing to the dispersion relation. Therefore, for every frequency, there are four possible

wavevectors (Mercier et al., 2008). This is demonstrated by the classic oscillating cylinder experiment

which creates the “St. Andrew’s Cross” (see Figure 4.2) (Mercier et al., 2008; Sutherland, 2010).

The dispersion relation can also be written as k2
z

= k2
x

tan(✓) where ✓ = ± arccos(!/N) is the angle

from the vertical along which the phase lines of the waves (i.e., the arms of the cross) are oriented

(Sutherland, 2010). The second conclusion is that the waves will be evanescent when ! > N as kz

would need to be imaginary, meaning that the amplitude of such waves would decay exponentially

away from the source (Aguilar et al., 2006). This is analogous to the quantum tunnelling of a

particle through a potential barrier (Eckart, 1961; Sutherland & Yewchuk, 2004; Ghaemsaidi et

al., 2016). When including the Coriolis term, the rotating streamfunction equation is @2
t
r2 =

�f2@2
z
 � N2(z)@2

x
 . This leads to the dispersion relation k2

z
= k2

x
(N2 � !2)/(!2 � f2) which adds

the condition that ! > f in order to not be evanescent. Generally in the ocean, N > f , and so

propagating waves must have f < ! < N (Sutherland, 2016).

Figure 4.2: A schematic of a vertically oscillating cylinder experiment where (a) the oscillation
frequency ! is less than the stratification frequency N0, making the “St. Andrew’s Cross” pattern
with wave beams propagating at an angle ✓ to the vertical, (b) ! is less than but almost equal to
N0, and (c) ! > N0 where the waves are evanescent. Reproduced from Figure 3.3 in Sutherland
(2010).
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4.2.3 Complex Demodulation

Complex demodulation, also sometimes known as Hilbert Transform, is a method that can be used to

isolate certain frequencies or wavenumbers from some wavefield  (~x, t)(Croquette & Williams, 1989;

Mercier et al., 2008; Grisouard & Thomas, 2015). This process works by using Fourier transforms

to construct some complex-valued field  ̃(~x, t) specifically such that taking its real part recovers

the original field Re[ ̃(~x, t)] =  (~x, t). Then, filters on  ̃ in Fourier space will extract particular

components. For example, past studies have used a band-pass filter to isolate near-inertial waves

and estimate their vertical displacement amplitudes (Dosser et al., 2014; Dosser & Rainville, 2016;

Lincoln et al., 2016). Other studies have used filters to eliminate the inertial component from drift

trajectories (Shaw et al., 2009; Mcphee, 2012). Here, we filter by the sign of a component of the

wavevector ~k to extract just the waves moving in a particular direction.

Following Mercier et al. (2008), we present an example of complex demodulation to demonstrate

how it works. While, from the two-dimensional dispersion relation (4.5), we know that a given set of

(!, N) allows for four possible wavevectors corresponding to four di↵erent directions of propagation,

we consider a simpler wavefield

 (t, x, z) = A cos(!t � kxx � kzz) + B cos(!t � kxx + kzz) (4.6)

where there are only two wave components: “A” propagating upwards and to the right and “B”

propagating downwards and to the right, both with the same wavenumber and frequency. A snapshot

of this input wavefield is show in Figure 4.3(a).

We can rewrite  in terms of complex exponentials using Euler’s formula:

 (t, x, z) =
1

2
(Ae�ikzz + Beikzz)ei!t�ikxx +

1

2
(Aeikzz + Be�ikzz)e�i!t�ikxx. (4.7)

The first step, called demodulation, obtains the complex-valued field  ̃. We take a Fourier

transform on  in time and apply a band-pass filter to isolate the positive frequency !. When taking

this Fourier transform across a finite time span using a simple rectangular filter, it is important that

the field is in steady state and the time span is an integer number of wave oscillation periods

T = 2⇡/!.

For this particular situation, a band-pass filter simply involves setting the second term in (4.7)

to zero. This eliminates half the amplitude so we then multiply by 2 and take the inverse Fourier

transform in time to get the complex-valued signal

 ̃(t, x, z) = (Aei!t�ikxx)e�ikzz + (Bei!t�ikxx)eikzz (4.8)

where Re[ ̃(t, x, z)] =  (t, x, z). This demodulation step is critical as it allows the subsequent

filtering based on the wavenumbers (Mercier et al., 2008).

With  ̃, separating the upward and downward waves is simple after taking a Fourier transform

across the z domain: eliminating the negative kz wavenumbers will leave the upward propagating

wave while eliminating the positive kz wavenumbers will leave the downward propagating wave.

The same process can be applied in other spatial dimensions. Similar to before, when taking Fourier

transforms across a finite spatial domain, it is important that the domain be an integer number of

wavelengths.
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Figure 4.3: (a) The input wavefield in equation (4.6). The upward (c) and downward (d) propagating
components of the input wavefield, isolated using complex demodulation. (d) The output wavefield,
which is the sum of (c) and (d), and is identical to the input.

Figure 4.3(c) shows the upward propagating field Ã(t, x, z) = A exp i(!t � kxx � kzz), the result

of taking a Fourier transform in z of  ̃, filtering to just the positive kz, and taking the inverse Fourier

transform. Figure 4.3(d) shows the downward propagating field B̃(t, x, z) = B exp i(!t�kxx+kzz),

resulting from the same process, except filtering to just the negative kz. The output wavefield

shown in Figure 4.3(b) is the result of adding panels (c) and (d), where Re[Ã + B̃] =  , that is, the

components isolated using complex demodulation reconstruct the original wavefield.

4.2.4 Calculating Vertical Energy Flux

I am interested in finding the vertical energy flux per unit mass F⇤
z

through a horizontal surface

at some depth z. For simplicity, I hereafter drop the asterisk superscript which indicates “per unit

mass”, understanding that this vertical energy flux has units of m2/s�3. I start by taking the dot

product of the momentum equation (4.1a) with ~v (Sutherland, 2010)

~v · @t~v + ~v · (~v · r~v) = �~v · [(f ẑ) ⇥ ~v] + ~v · ⌫r2~v � ~v · rp⇤ + ~v ·~b (4.9)

where, even though I assume the Coriolis force to be negligible in my system, the Coriolis term would

cancel out anyway. This is because (f ẑ)⇥~v = (�fv, fu, 0) and ~v ·(�fv, fu, 0) = �fuv+fuv+0 = 0.
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On the left-hand side of (4.9), I expand the first term using the reverse of the product rule:

~v · @t~v =
1

2
@t|~v|2 = @tEk, (4.10)

where I’ve defined kinetic energy per unit mass as Ek = (1/2)|~v|2. The other term on the left-hand

side represents advection and expanding this using the dot product rule gives

~v · (~v · r~v) = ~v ·

1

2
r|~v|2 � ~v ⇥ (r ⇥ ~v)

�

where the second term in the brackets vanishes because ~v · [~v ⇥ (r ⇥ ~v)] = 0. The other term in

brackets is rEk and, using a vector identity of divergence,

~v · rEk = r · (Ek~v) � Ek(r · ~v)

where the second term goes to zero because the incompressibility condition (4.1b) states the flow is

non-divergent. Therefore,

~v · (~v · r~v) = r · (Ek~v) (4.11)

On the right-hand side of (4.9), I expand the Laplacian in the viscosity term

~v · ⌫r2~v = ~v · ⌫(@2
x
~v + @2

y
~v + @2

z
~v)

and then, using a rearrangement of the product rule

~v · (@2~v) = @

✓
1

2
@|~v|2

◆
� @~v · (@~v),

the viscosity term becomes

~v · ⌫r2~v = ⌫r · (rEk) � ✏, (4.12)

where the first term on the right-hand side represents the di↵usion of kinetic energy and ✏ =

⌫
⇥
(@x~v)2 + (@y~v)2 + (@z~v)2

⇤
is the dissipation of kinetic energy.

For the pressure term on the right-hand side, the product rule states

~v · rp⇤ = r · (p⇤~v) � p⇤r · ~v

where, again, the second term vanishes because of the incompressibility condition (4.1b), therefore

~v · rp⇤ = r · (p⇤~v). For the buoyancy term, we have simply ~v · (bẑ) = wb. Substituting these along

with (4.10), (4.11), and (4.12) into (4.9) gives

@tEk + r · (Ek~v) = ⌫r · (rEk) � ✏� r · (p~v) + wb,
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which can be rearranged into

@tEk = �r · ~F + wb � ✏, where ~F = (EK + p⇤)~v � ⌫rEk

is the energy flux per unit mass, whose vertical component would then be

Fz = (EK + p⇤)w � ⌫@zEk =
1

2
|~v|2w + p⇤w � ⌫@z

✓
1

2
|~v|2

◆
, (4.13)

where the three terms represent vertical energy flux per unit mass due to advection, pressure, and

viscous di↵usion, respectively.

4.3 Dedalus

Dedalus (Burns et al., 2020) is a framework that uses spectral methods to solve arbitrary systems

of partial di↵erential equations (PDEs) which I used to perform the numerical experiments in this

chapter. While the majority of a Dedalus simulation is spent in optimized C libraries, the front-end

is provided as an open-source Python package. A major advantage of Dedalus is that equations,

boundary conditions, and other parameters of a problem can be entered in human-readable, plain-

text strings which are then translated into solvers. This allows easy entry and modification of the

equations for a system which, along with being implemented in an open-source, high-level language

like Python, makes Dedalus an accessible framework for solving PDEs. It can also be run in parallel

using MPI. Dedalus has been used in many studies across a wide variety of scientific fields. In

oceanography, it has been used to model processes such as the restratification (Callies, 2018) and

tracer transport (Holmes et al., 2019) in abyssal mixing layers, instabilities in the bottom boundary

layer (Wenegrat et al., 2018), as well as mixing of flow under ice keels (De Abreu et al., 2024).

4.4 Numerical Experiments in One Spatial Dimension

I start developing numerical experiments in a moderately simplified system. The analytical solutions

for transmission through multiple layers presented by Sutherland (2016) neglect viscosity. While this

may be a reasonable assumption at large scales in the ocean, Sutherland & Yewchuk (2004) note

that including viscosity is needed to accurately compare theoretical predictions with laboratory

experiments. As I will be comparing my results to the wave tank experiments conducted by G16, I

choose to include viscosity, but neglect the Coriolis force, which is negligible at those scales.

4.4.1 Experimental Setup

For these experiments, I represent the system using (4.3), the streamfunction representation of the

Boussinesq equations in two dimensions

@2
t
(@2

x
 + @2

z
 ) = ⌫@tr4 � N2(z)@2

x
 ,

which neglects the Coriolis force and di↵usion, assumes small amplitude waves, and where r4 =

@4
x
+2@2

x
@2
z
+@4

z
is the biharmonic operator, the square of the Laplacian. This is exactly the equation
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used by G16.

Collapsing the horizontal dimension

For these experiments, I assume the flow is bounded above and below by infinite horizontal bound-

aries. Because of this, and because the stratification depends on z, I need to keep the z-dependence

of the streamfunction undetermined at this point, but I can assume that the flow is periodic in the

horizontal direction, namely,

 (t, x, z) =  ̂(t, z) exp[ikxx] (4.14)

where kx is the horizontal wave number (Sutherland, 2010). This is equivalent to the standard

plane waves assumption (4.4), except only one spatial component of the wave is explicitly assumed.

Note that, while  ̂(t, z) may be complex valued, I assume the actual flow is the real part of (4.14)

(Sutherland, 2010). With this form, I substitute for the derivatives of  with respect to x in the

above streamfunction equation to give

@2
t
(@2

z
 � k2

x
 ) = ⌫

�
@4
z
 � 2k2

x
@2
z
 + k4

x
 
�

+ N2(z)k2
x
 (4.15)

where now the only direction of consequence is the vertical z. I choose the same value of viscosity

as G16, ⌫ = 10�6 m2 s�1. If viscosity were neglected, equation (4.15) becomes the same as used by

Sutherland & Yewchuk (2004).

Domains and Bases

By collapsing the horizontal dimension, I now have only one spatial dimension z to define. In order

to use complex demodulation to separate waves by their direction of motion, I need to have equally

spaced grid points. I choose to accomplish this by using a Fourier basis in z, which also implicitly sets

periodic boundary conditions. In this way, I cannot force waves directly from a boundary. However,

I achieve the same e↵ect by dedicating the top portion of the extent to generate waves. This not

only creates the intended waves that propagate from the top to the bottom of the domain, but also

creates waves that propagate upward, through the periodic boundary, and continue propagating

from the bottom to the top of the domain. To dampen these unwanted waves, and to avoid the

intended waves from looping back around once reaching the bottom, I dedicate the bottom portion

of the extent to be a sponge layer. The spatial domain is then divided into three extents: for the

boundary forcing, the measurement, and the sponge layer, as depicted in Figure 4.4.

The sizes of each extent are largely defined in terms of the generated vertical wavelength �z =

2⇡/kz which I set to be 1 m for these experiments. The boundary forcing extent starts at z = 3�z

and goes down to z = 0. The top of the measurement extent is always at z = 0 and the length

of the measurement extent is always an integer number of �z. However, the exact number of �z,

and therefore the measurement extent’s bottom depth zf , depends on the particular stratification

structure. Similar to the boundary forcing extent, the sponge layer extent is 3�z in length, but

extends down past zf .
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Figure 4.4: A depiction of the domain of the experiment. The two black horizontal dashed lines show
the top and bottom of the measurement extent. The orange and teal dashed lines show calculation
domains for the amplitudes of the incoming and transmitted wave, respectively. (left) An example
background N(z) profile, showing a double-layer stratification structure in the purple solid line and
the frequency ! used to force the waves in the blue dotted line. (right) The placement and shape of
the windows for the boundary forcing Wbf (z) (solid) and sponge layer Wsp(z) (dotted).

Stratification profiles

The stratification profiles are defined piece-wise, with N(z) = 0 within each of the n layers and

N(z) = N0 everywhere else:

N(z) =

(
0 zi

min
< z < zi

max
, for i = 1, ..., n

N0 elsewhere
(4.16)

where I set the reference stratification frequency to N0 = 1 rad s�1 and define the top and bottom

of each layer i, zi
max

and zi
min

to be

zi
max

= zi�1
min

� RiL (4.17)

zi
min

= zi�1
max

� L (4.18)

where L is the layer thickness and Ri is the ratio of interface to layer thickness, which I set to be 1.

To give a bu↵er for waves incoming from the boundary forcing extent, I explicitly set z1
max

= �2�z

as the top of the stratification structure. To provide a bu↵er for waves exiting the stratification

structure before hitting the sponge layer, and to define the measurement extent to be an integer
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number of wavelengths, the bottom of the measurement extent is defined to be

zf = zn
min

� �z


1 �

✓
z1
max

� zn
min

�z

◆
+

�
z1
max

� zn
min

�z

⇡�
� 2�z. (4.19)

where b e represents rounding to the nearest integer. An example of this type of stratification profile

with n = 2 layers can be seen in Figure 4.4 (left) where zf = 5�z is marked by a black dashed line.

Sponge layer forcing

To only dampen waves within the bottom 3�z of the domain, I define a Gaussian sponge layer

window

Wsp(z) = exp

"
�4 ln(2)

✓
z � zsp,c
�z

◆2
#

(4.20)

where zsp,c = zf � 3�z/2 is the center of the Gaussian function with a full-width at half max of

�z. The shape and position of this window is depicted in Figure 4.4(right) and is set to provide a

smooth transition of increasing strength as a sudden onset of a strong sponge layer can cause waves

to reflect instead of being dissipated (Jablonowski & Williamson, 2011).

Inside this window, I apply a Rayleigh friction sponge forcing in the form

Fsp( , z) =
Wsp(z)

⌧sp

�
@2
z
@t � k2@t 

�
(4.21)

where I set the time constant to be ⌧sp = 1 s. This counteracts the wave field, e↵ectively damping

any motion that enters the sponge layer window. Rayleigh friction is used as a sponge layer at the

top of the atmosphere in some Global Climate Models (GCMs) (Jablonowski & Williamson, 2011).

Boundary forced waves

In order to force waves only within the top 3�z of the domain, I define a Gaussian boundary forcing

window in a similar way to the sponge layer

Wbf (z) = exp

"
�4 ln(2)

✓
z � zbf,c
�z

◆2
#

(4.22)

where zbf,c = 3�z/2 is the center of the Gaussian function, again with a full-width at half max of

�z. The shape and position of this window is depicted in Figure 4.4(right).

Inside this window, I force plane waves using a similar assumption to (4.14) but in the vertical

dimension

Fbf ( , z) =
Wbf (z)

⌧bf

h
Â sin(kzz � !t) �  

i
(4.23)

where I set the time constant to be ⌧bf = 1 s, the forced wave amplitude to be Â = 2 ⇥ 10�4

(unitless), and the wave frequency to be ! = N0 cos (✓) which, because I define N0 = 1 rad s�1 and,

as detailed below, ✓ = 45�, I have ! = 0.7071 s�1.
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Equation of motion

Adding in the forcing terms for the boundary forcing (4.23) and the sponge layer (4.21), the one

dimensional equation of motion (4.15) becomes

@t
�
@2
z
@t � k2

x
@t 

�
� ⌫

�
@4
z
 � 2k2

x
@2
z
 + k4

x
 
�

= k2
x
N2(z) + Fbf ( , z) � Fsp( , z) (4.24)

which is the equation I use in the code for this work.

4.4.2 Methods

In this work, I am interested in quantifying how much of a wave that is incident on the top of

a stratification structure transmits out the bottom for a range of di↵erent structures. This is

calculated by comparing the amplitude squared of the incident wave AI to the amplitude squared of

the transmitted wave AT to find the transmission coe�cient

T = AT/AI (4.25)

which is equivalent to the fraction of the energy of the incident wave which is transmitted through

the stratification. In the case of one layer, the analytical solution of (4.25) is

Tana =

"
1 +

✓
sinh(kxL)

sin(2✓)

◆2
#�1

, (4.26)

where kx is the horizontal wave number, L is the layer thickness, and ✓ = arccos(!/N0) is the

incident angle (Sutherland & Yewchuk, 2004). From this, the largest values of T occur when ✓ = 45�

and so I choose this angle for all of my experiments in order to have the largest theoretically possible

signal. I choose to run my experiments over a range of kxL values to see how T changes. For a

lower limit, when kxL = 0, there is no stratification structure and T = 1. As kxL increases, T
asymptotically approaches zero, becoming less than 2 ⇥ 10�4 when kxL = 5, and so I choose this as

my upper limit.

Analytical solutions exist for stratification structures with more than one layer (Sutherland,

2016), which are complex enough that reproducing them here would not be illuminating. These

solutions of T for multiple layers with ✓ = 45� follow the same edge conditions as one layer with

T(kxL = 0) = 1 and reaching T ⇡ 0 around kxL = 5. However, unlike (4.26), they do not

monotonically decrease in T, instead having spikes of high transmission for particular values of kxL.

In order to have enough resolution to resolve these features, for each number of layers, I run 128

experiments evenly spaced across values of kxL from 0 to 5.

Selecting the timestep

In order to calculate AI and AT, I extract just the downward propagating wavefield  ̃# by using

complex demodulation, a process detailed in Section 4.2.3. This process requires the spatial extent

to be an integer number of that dimension’s wavelengths. Due to the way I define the measurement

extent in (4.19), this is always satisfied. Using complex demodulation also requires a wavefield in

steady state that lasts an integer number of wave periods, T = 2⇡/!.
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While any integer number of T would su�ce, I consider that complex demodulation involves

taking Fourier transforms. The implementation of the Fast Fourier Transforms (FFTs) used in the

code expect the array size to be a power of two. Not only is this implementation of FFT most e�cient

when the data array length is already a power of two, but padding the array until it reaches the next

power of two can sometimes produce errors in the calculation, especially for periodic functions which

are not zero outside the chosen domain (Briggs & Henson, 1995). Therefore, I choose a time step

size and number of wave periods such that the number of time steps over which I perform complex

demodulation is a power of two. Specifically, I choose a time step �t = T/64 and an interval of 8

wave periods so that I perform complex demodulation over 512 time steps for each experiment.

Measuring the transmission coe�cient

Measuring the transmission coe�cient T for an experiment involves trimming the wavefield  to

just the measurement extent in both time and space, performing complex demodulation (see Section

4.2.3) to extract just the downward propagating wavefield  ̃#, and calculating the amplitudes squared

AI and AT. As an example to illustrate this process, Figure 4.5 shows the total resulting wavefield

 for a experiment where ✓ = 45� and the stratification had one layer with kxL = 1.55.

Figure 4.5: The total wavefield of an example experiment where kxL = 1.55 and ✓ = 45�. The
solid red line represents the wave propagation speed cgz. The two black horizontal dashed lines
show the top and bottom of the measurement extent. The black vertical dashed line marks the time
at which steady state is assumed. The orange and teal dashed lines show calculation domains for
the amplitudes squared of the incoming and transmitted wave, respectively. After steady state was
reached, T = 0.16.

The measurement extent, where I measure the amplitudes squared, should reach steady state

after the first waves have been able to propagate through its bottom boundary zf . In an abundance

of caution, I allow a transient period of time it would take a wave moving at the vertical group

velocity cgz to be generated, travel down to the bottom of the measurement extent, then back up
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to the top of the measurement extent. That is

ttransient =
1

cgz
(|zbf,c| + 2|zf |) (4.27)

where for the example experiment shown in Figure 4.5, ttransient/T = 23 and is marked by the

vertical black dashed line. As I choose to perform complex demodulation over 8T , the end of the

experiment is then tf = ttransient + 8T, where for the example experiment, tf/T = 31. Figure 4.6

shows  ̃#.

Figure 4.6: The downward propagating wavefield in the measurement domain of an example ex-
periment where kxL = 1.55 and ✓ = 45�. The wave is incident on the layer from above and the
lower amplitude of the transmitted wave can be seen. After steady state was reached, T = 0.16.
The orange and teal dashed lines show calculation domains for the amplitudes of the incoming and
transmitted wave, respectively.

For both amplitudes squared of interest, AI and AT, I choose a range in z over which to average

that I define to be �z in length and �z/2 away from the stratification structure. Specifically, the

orange dashed lines in Figure 4.6 are at zAI
min

= z1
max

+ �z/2 and zAI
max

= zAI
min

+ �z where z1
max

is

the top of the stratification structure. Similarly, the teal dashed lines are at zAT
max

= zn
min

� �z/2

and zAT
min

= zAT
max

� �z where zn
min

is the bottom of the stratification structure.

I then calculate the amplitudes squared by

A = h| ̃#|i = h ̃# ·  ̃cc

# i (4.28)

where  ̃cc

# is the complex conjugate of  ̃# and hi represents the average across both the time dimension

between ttransient and tf and the spatial dimension between the applicable bounds; for AI, I average

in the z direction between zAI
min

and zAI
max

and for AT, between zAT
min

and zAT
max

. Having both AI and

AT, I can calculate the transmission coe�cient which, for the example experiment in Figure 4.6, is
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T = 0.16.

4.4.3 Results

For stratification structures with 1, 2, 3, 4, and 5 layers, I perform 128 experiments with values of

kxL ranging from 0 to 5. For one layer, every experiment with kxL > 2.5 had T < 0.025. For 2, 3,

4, and 5 layers, every experiment with kxL > 2.5 had T < 0.01. Therefore, Figure 4.7 shows these

experiments for kxL from 0 to 2.5. The experiments for one layer are in excellent agreement with

the values predicted by (4.26).

Figure 4.7: The transmission coe�cient T for the analytical solution of 1 mixed layer (4.26) and
experiments of 1, 2, 3, 4, and 5 mixed layers. Each marker represents one experiment.

For the experiments with multiple layers, there are peaks in transmission at intermediate values

of kxL. This is a manifestation of the internal gravity wave tunnelling phenomenon (Sutherland &

Yewchuk, 2004). The largest of these peaks for each number of layers decreases in kxL as the number

of layers increases. These results cannot be directly compared to the predictions of Sutherland (2016)

as I use finite-thickness interfaces. However, I compare to the results of G16, who modeled a two

layer system with a finite-thickness interface.

G16 numerically solved both the inviscid and viscous equations directly for the transmission

coe�cient. While I was able to reproduce their results in the inviscid case with the codes they made

available, I was unable to do so for the viscous case. Therefore, I make quantitative comparisons

only to their inviscid results in Figure 4.8. For the one layer case, the results of my viscous numerical

experiments as well as the inviscid results of G16 agree very well with the analytical prediction of

Sutherland & Yewchuk (2004). For the two-layer case, the two methods agree in the value of kxL for

which the peak in T occurs and the approximate width of the resonance curve, but the G16 method

finds a larger T.
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Figure 4.8: The transmission coe�cient T for the analytical solution of one mixed layer (4.26) and
experiments of one and two mixed layers as calculated with Dedalus in this study or by the inviscid
MATLAB code of G16. Each marker represents one experiment.

G16 ran both inviscid and viscous numerical experiments and found the magnitude in T of the

peaks to be lower in the viscous case. As my experiments included viscosity, I find agreement in

this as the maximum T I found in the transmission peak is lower than that for G16’s inviscid case.

However, they also showed that the value of kxL for the maximum T in the peak is noticeably lower

in the viscous case compared to their inviscid experiments. This is opposed to how I found agreement

in the kxL of the transmission peak in my viscous experiments compared to their inviscid case. While

the reason for this discrepancy is unclear, the overall agreement suggests that the experiments in

Dedalus correctly represent the theoretical predictions for this scenario. In the Dedalus framework,

the equations of motion are explicitly written in to the code, o↵ering a more transparent and more

easily modifiable script than those used by G16.

For the case of more than two mixed layers, only qualitative comparisons can be made to the

predictions of Sutherland (2016) as they assumed infinitely thin interfaces and plot the transmission

coe�cient on kL vs !/N0. A similarity between Figure 4.7 and the results of Sutherland (2016) are

that, with more layers, there are more peaks in transmission. The result that the largest peak for

each number of layers occurs at smaller values of kxL as the number of layers increases remains to

be confirmed.

4.5 Numerical Experiments in Two Spatial Dimensions

As demonstrated above, the transmission through stratification structures of well-mixed layers de-

pends on the interference patterns of waves, creating peaks in transmission when that interference is

constructive (Wunsch, 2018). In the previous section, I assumed infinite plane waves in the horizon-
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tal, e↵ectively collapsing the system to just one vertical spatial dimension. Allowing for horizontal

variations, as more realistic waves would have, changes the manner of interference, and thus the

transmission, when encountering layered stratification structures. In order to allow for these e↵ects,

and to accurately reproduce the results of wave tank experiments, I turn my attention to a fully

two-dimensional system. G16 performed a laboratory experiment to investigate the propagation of

internal waves through vertical stratification. Here, I explain how, following Foran (2017), I worked

to recreate the conditions of those wave tank experiments within my Dedalus numerical experiments.

4.5.1 Experimental setup

Because Coriolis e↵ects were not present in the laboratory experiment performed by G16 and they

are not essential to the dynamics of interest, I choose to neglect rotation. Taking the Boussinesq

equations of motion (4.1), expanding the material derivatives, and neglecting the Coriolis term gives

the following system of equations:

@t~v + ~v · r~v = ⌫r2~v � rp⇤ + bẑ (4.29a)

r · ~v = 0 (4.29b)

@t~b + ~v · r~b = r2~b � N2(z)w (4.29c)

which, again, assumes a vertically density-stratified, nearly incompressible, and non-rotating fluid.

These equations serve as a base for these experiments in Dedalus using a two-stage, second-order,

diagonally implicit Runga-Kutta time stepping scheme with a constant dt = 0.125 s (Ascher et al.,

1997). I use the same value of viscosity, ⌫ = 10�6 m2 s�1, as G16 which is the viscosity of pure

water at 20�C. The di↵usivity () used was not specified, so I use the corresponding value for pure

water at 20�C:  = 1.4 ⇥ 10�7 m2 s�1 (Kundu et al., 2015).

Domains and Bases

The wave tank experiments performed by G16 took place in a wave tank depicted schematically in

Figure 4.9. The tank was 0.54 m deep and 5.46 m long. The width was 0.55 m, but a partition

reduced the working section to a width of 0.2 m. Parabolic reflection barriers at either end directed

unwanted waves generated in the working section around the partition into the 0.35 m wide dissi-

pation section (Echeverri, 2009). G16 took measurements in a domain 0.5 m deep and 0.5 m long,

centered along the length of the tank.

While the wave tank experiments were three dimensional, I choose to simplify the experiments

down to two dimensions to reduce the required computing time and memory resources. This is

a reasonable simplification for this study because, in the experiment performed by G16, the wave

forcing in the tank did not vary along the width, the width of the tank was relatively small compared

to the depth and the length, and they only recorded the wave motion in two dimensions. Therefore,

I now assume r = (@x, @z) and ~v = (ux̂, wẑ) in equations (4.29).

In my experiments, the full domain is 1.5⇥1.5 m, with the bounds �0.5  x  1 in the horizontal

and 0  z  �1.5 in the vertical and with 512 grid points in each direction. I use the same 0.5⇥0.5

m size measurement domain as G16, with the top at z0 = 0, the bottom at zf = �0.5 and the

horizontal measurement extent 0  x  0.5. As the equations of motion (4.29) contain only up
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Figure 4.9: (Left) A schematic of the experimental setup used by G16 showing the dimensions
of the tank and the measurement area as well as the positioning of the wave generator. (Right)
Measurements of the density stratifications, �⇢ = ⇢�1000 for the (a) single- and (b) double-mixed-
layer experiments. Reproduced from Figure 4 in G16.

to quadratic nonlinearities, I use a dealiasing factor of 3/2 in both spatial dimensions (Boyd, 2001;

Burns et al., 2020). My primary interest for this project is vertical motion so I use a Chebyshev basis

in the z direction which, within the Dedalus framework, allow me to force waves from the boundary

and define non-constant coe�cients (NCC’s) that vary in the vertical, such as the background

stratification N(z) and sponge layer S(z).

The vertical extent below the measurement domain is used as a sponge layer, extending from

zsp,0 = �0.5 m down to zsp,f = �1.5 m. Using a Chebyshev basis in the vertical also allows me

to use a lower resolution in the sponge layer, saving computational resources. While I use a total

of 512 grid points in the vertical, 472 were in the upper layer while 40 were in the sponge layer.

In these experiments, I apply a di↵usive sponge S(z) to the viscosity ⌫, by which I increase the

e↵ects of viscosity near the bottom, artificially dampening downward propagating waves to prevent

reflections caused by hitting the bottom boundary. Specifically, I define the sponge layer to be

S(z) = 1 +
1

2
(Hsp � 1) [tanh(ssp(z � zsp,c)) + 1] (4.30)

where I set the amplitude of the sponge layer as Hsp = 50 (unitless), the slope of the sponge layer

to be ssp = �5 m�1, and zsp,c = zsp,f � (2/3)(zsp,f � zsp,0) = �7/6 m as the center of the sponge

layer ramp. A depiction of this coe�cient can be seen in Figure 4.10(a) and I apply this to the value

of viscosity ⌫ in the equations of motion. The values of the constants in (4.30) were chosen to give

the sponge layer a high enough amplitude to stop downward waves with a gentle enough slope to

avoid reflecting the waves back upwards (Jablonowski & Williamson, 2011).

For the horizontal direction, I use a Fourier basis which implicitly defines periodic boundary

conditions. The waves were generated at the top left edge of the measurement domain. While

most of the unwanted interference was eliminated by the sponge layer, the extra 1 m of simulated

horizontal domain and the periodic boundary conditions in x allows enough time for the experiments
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Figure 4.10: (a) The profile of the sponge layer given by equation (4.30). The (b) single- and
(c) double-mixed-layer stratification profiles in solid lines used to emulate those of G16 where the
dotted lines represent the value of the forcing frequency ! used in each case. The black dashed lines
represent the bottom of the measurement domain.

to develop before unwanted reflections were able to reappear in the measurement domain.

Stratification profiles

G16 constructed two di↵erent stratification profiles in the wave tank: a single mixed layer approxi-

mately 7 cm thick as shown in Figure 4.9(a) and a double mixed layer with two layers approximately

7 cm thick separated by approximately 3.5 cm as shown in Figure 4.9(b). In both profiles, the stratifi-

cation above and below the mixed layers was N0 = 0.95 rad s�1 and Nf = 1.24 rad s�1, respectively,

while N = 0 within the layers.

In the laboratory experiment, the stratification took a few centimeters to transition between

values, making the layer edges smoother than the sharp transitions seen in Section 4.4. To reproduce

these smooth and continuous layer edges, I form both the single- and double-layer stratification

profiles using combinations of tanh functions. For the single layer case, I set

N1(z) = 0.5N0 [tanh(sst(z � zst,0)) + 1] + 0.5Nf [tanh(�sst(z � zst,f )) + 1] , (4.31)
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where the top and bottom bounds of the stratification are zst,0 = �0.22 m and zst,f = �0.30 m,

respectively, and the stratification slope is sst = 200. This is depicted in Figure 4.10(b). For the

double layer case, I set

N2(z) = 0.5N0 [tanh(sst(z � zst,0)) + 1] + 0.5Nf [tanh(�sst(z � zst,f )) + 1] + Nint(z) (4.32)

where the only di↵erences from the one layer case are the bottom stratification bound zst,f = �0.38 m

and the stratification for the interface:

Nint(z) = 0.5Ni [tanh(sst(z � zint,0)) + 1] + 0.5Ni [tanh(�sst(z � zint,f )) + 1] (4.33)

where the height of the interface is Ni = 0.5(N0+Nf ) = 1.095 rad s�1 and the center of the interface

is zint,c = zst,f +(zst,0 � zst,f )/2 = �0.3 m which makes the top and bottom bounds of the interface

zint,0 = zint,c � 0.025 m and zint,f = zint,c + 0.025 m, respectively, and so the thickness of the

interface is 5 cm. This is depicted in Figure 4.10(c).

Boundary Conditions

The equations of motion for this problem (4.29) contain time derivatives of b, u, and w, making

them state variables and leaving one diagnostic variable, namely, p⇤ (Cushman-Roisin & Beckers,

2011). Each of the state variables requires initial conditions as well as conditions on their values at

the horizontal and vertical boundaries of the experiment at all times.

By choosing a Fourier basis in x, I implicitly set periodic boundary conditions in the horizontal

direction. Using a Chebyshev basis in z allows me to directly set the state variables along the top

and bottom boundaries, that is, I set six Dirichlet boundary conditions in the vertical direction. For

the first three, I set the state variables equal to zero at the bottom of the domain, u(zf ) = w(zf ) =

b(zf ) = 0, to guarantee no waves can originate from the bottom. At the top of the domain (z0),

I prescribe functions for the boundary conditions on u, w, and b to force downward-propagating

internal waves.

In the wave tank, G16 vertically oscillated a 7.5 cm diameter cylinder which spanned the width

of the working section. Oscillations had an amplitude of 7 mm and the cylinder was located just

outside the top left corner of the measurement domain. This generated an internal wave beam

which propagated through the measurement domain, downwards and to the right. To reproduce

these waves in my experiments, I find the polarization relations between the variables starting with

the plane wave assumption (4.4) in two spatial dimensions

⌘(t, x, z) = ⌘0 exp [i(kxx + kzz � !t)], (4.34)

where kx and kz are the horizontal and vertical wavenumbers, ! is the frequency of the boundary

forcing, ⌘ represents any one of the variables u, w, p⇤, or b, and ⌘0 is an arbitrary coe�cient.

In the plane wave assumption (4.34) for buoyancy, I define the coe�cient to take the form

b0 = �Âg. With this, I make the small amplitude assumption, that is, Â is small enough such

that the nonlinear terms, which scale with the amplitude squared, can be neglected, linearizing the

equations of motion (Sutherland, 2010; Cushman-Roisin & Beckers, 2011). With these linearized
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equations, the polarization relation is then

u = �Âg
!kz

N2kx
sin (kxx + kzz � !t) (4.35a)

w = +Âg
!

N2
sin (kxx + kzz � !t) (4.35b)

b = �Âg cos (kxx + kzz � !t). (4.35c)

p⇤ = �Âg
!2kz
N2k2

x

sin (kxx + kzz � !t). (4.35d)

where, in the experiments for this work, I use Â = 2.3 ⇥ 10�4 (unitless). A complete derivation of

this polarization relation can be found in Section C.2.

The oscillating frequencies used by G16 in the scenarios I reproduce were not specified. Following

Foran (2017), who successfully reproduced the experiment through di↵erent numerical experiments, I

choose the frequencies !1 = 0.67 s�1 and !2 = 0.72 s�1 for the single and double mixed layer profiles,

respectively. Both G16 and Foran (2017) used a characteristic total wavenumber of k = 45 m�1 for

the boundary forcing. Through trigonometry and the dispersion relation of internal waves (4.5)

✓ = arccos(!/N), kx = k cos(✓), kz = k sin(✓), (4.36)

those frequencies correspond to an angle below the horizontal ✓1 = 45.1�, kx,1 = 31.7 m�1, and

kz,1 = 31.9 m�1 for the single layer and ✓2 = 40.7�, kx,2 = 34.1 m�1, and kz,2 = 29.4 m�1 for the

double layer. These values are summarized in Table 4.1.

The state variables also require initial conditions to be specified (Cushman-Roisin & Beckers,

2011), and I set them all to zero across the domain. Because because of this, using (4.35) directly

as the top boundary forcing causes a transient oscillation that eventually dies out. To mitigate this

transient, I apply a temporal ramp function to the boundary forcing

Rbf (t) =
1

2

✓
tanh


4t

nT
� 2

�
+ 1

◆
, (4.37)

where T = 2⇡/! is the oscillation period and I set the ramp to last n = 3 oscillation periods

because it is long enough to make the transient oscillation negligible but not long enough to make

the experiment spin up time cumbersome.

To simulate the finite extent of the cylindrical wave generator, I apply a windowing function

Wbf (x) =
1

4
{tanh [sw(x � xl)] + 1} {tanh [�sw(x � xr)] + 1} (4.38)

to the top boundary forcing where sw is the slope of the window’s sides, xl is the window’s left edge,

and xr is the window’s right edge. I set sw = 20 for a balance between edges too steep to run the

code e�ciently and edges too shallow to form well-defined wave beams. To have the waves originate

from the top left corner of the display domain, I set xl = ��x/2 and xr = �x/2 where �x = 2⇡/kx

is the horizontal wavelength.

With the parameters set as stated, I apply both the ramp (4.37) and windowing (4.38) to the

polarization relation (4.35) for the state variables in order to get the following boundary conditions
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at the top of the domain:

u(z0) = �Â
g!kz

N2
0 kx

sin (kxx + kzz � !t)Wbf (x)Rbf (t) (4.39a)

w(z0) = +Â
g!

N2
0

sin (kxx + kzz � !t)Wbf (x)Rbf (t) (4.39b)

b(z0) = +Âg cos (kxx + kzz � !t)Wbf (x)Rbf (t) (4.39c)

This creates an internal wave beam that ramps up to its full amplitude after a few oscillation periods,

propagating from the top left towards the bottom right of the measurement domain.

Condition for Linearity

In this project, I am only interested in investigating linearly stable flows. This could be ensured

by monitoring the Richardson number Ri = N2/(@zu)2 because if Ri > 1/4, then linear stability is

guaranteed (Kundu et al., 2015). However, since Ri is proportional to N2 and I set N = 0 explicitly

in sections of the background profile, this is not a viable option.

To compare the relative magnitudes of linear versus nonlinear terms, I use the horizontal mo-

mentum equation (4.29a), defining a linearity criterion Clin as the ratio of the nonlinear advection

term u@xu+w@zu and the linear term @tu. Under the plane wave assumption (4.34) the derivatives

become @x ! ikx, @z ! ikz, and @t ! �i!. Therefore, I find the condition for linearity to be when

Clin =
kxu + kzw

!
⌧ 1 (4.40)

is satisfied everywhere in the flow. For all experiments in this work, Clin is on the order of 0.1 or

smaller at all times.

Equations of motion

Using equations (4.29) in two spatial dimensions, I apply the sponge layer S(z) given by (4.30), and

define the background stratification N(z) as either (4.31) (single layer) or (4.32) (double layer) to

give

@tu � S(z)⌫(@2
x
u + @2

z
u) + @xp = �(u@xu + w@zu) (4.41a)

@tw � S(z)⌫(@2
x
w + @2

z
w) + @zp � b = �(u@xw + w@zw) (4.41b)

@xu + @zw = 0 (4.41c)

@tb � (@2
x
b + @2

z
b) = �N2(z)w � (u@xb + w@zb) (4.41d)

which, along with the boundary conditions, are the equations I use in the code for this work. The

values of the constants are summarized in Table 4.1.

4.5.2 Methods

In the previous set of experiments, I focused my analysis on the transmission coe�cient, measuring

the amplitude squared of the wave that is transmitted through a stratification structure in com-

parison to the amplitude squared of the incident wave. I calculated the transmission coe�cients
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using complex demodulation. In the present experiments, I use a compound Chebyshev basis in

the vertical direction. Because the Fourier transform of such a basis is not straight-forward (Fokas

& Smitheman, 2012), I choose to focus my attention not on the transmission ratio, but on the

vertical energy flux. As detailed Section 1.1, vertical energy flux due to internal waves could have

implications for the Arctic Ocean system.

Measuring Vertical Energy Flux

Because the energy which internal waves can transport vertically can have a significant impact on

the climate system (Ghaemsaidi et al., 2016), I choose to measure the vertical energy flux of these

experiments. I would like to find the vertical energy flux per unit mass Fz through some horizontal

surface at a depth z. Taking the expression (4.13) for Fz down to two dimensions and applying the

product rule gives

Fz =
1

2
(wu2 + w3) + p⇤w � ⌫(u@zu + w@zw), (4.42)

where the three terms represent vertical energy flux per unit mass due to advection Fa, pressure

Fp, and viscosity F⌫ , respectively all with units m3/s3. Note that I set the signs in (4.42) such that

a negative Fz means the energy is propagating downwards.

To find Fz through some depth z at a certain time t, I integrate across the horizontal domain

from xmin to xmax for each term, starting with

hFai(z, t) =

Z
xmax

xmin

1

2
(u2w + w3)dx, (4.43)

and similarly for hFpi and hF⌫i, and where the total vertical energy flux is the sum of these three

terms, hFzi = hFai + hFpi + hF⌫i. I calculate each of these terms at all depths and times for each

experiment.

Estimating Vertical Energy Flux Magnitude

In order to get an estimate for the relative contributions of each term I should expect, I substitute

in the polarization relation (4.35) for u, w, p⇤, and b for each term in (4.42):

Fa =
1

2

⇣
Âg

!

N2

⌘3

k2
z

k2
x

+ 1

�
sin3 (kxx + kzz � !t) (4.44a)

Fp = �
⇣
Âg

!

N2

⌘2 !kz
k2
x

sin2 (kxx + kzz � !t) (4.44b)

F⌫ = �⌫kz
⇣
Âg

!

N2

⌘2

k2
z

k2
x

+ 1

�
sin (kxx + kzz � !t) cos (kxx + kzz � !t) (4.44c)

When integrating over an integer number of horizontal wavelengths, Fa and F⌫ will go to zero.

Therefore, in the ideal case of infinite plane waves, the total vertical energy flux per unit mass is

expected to be entirely due to Fp.

These experiments are not, however, the ideal case and so I can estimate the relative contributions

of each term by calculating the coe�cients F̂a, F̂p, and F̂⌫ which amount to the magnitude of

equations (4.44) without the trigonometric functions. I calculate these coe�cients in Table 4.1 using
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Parameter Units Constant N Single layer Double layer
g m/s2 9.81 – –
 m2/s 1.4 ⇥ 10�6 – –
⌫ m2/s 10�6 – –

Â None 2.0 ⇥ 10�4 2.3 ⇥ 10�4 2.3 ⇥ 10�4

N0 rad/s 1.0 0.95 0.95
k m�1 53.32 45 45
kx m�1 37.70 31.74 34.12
kz m�1 37.70 31.90 29.36
! rad/s 0.7071 0.67 0.72
✓ deg 45� 45.15� 40.72�

cgz m/s 9.38 ⇥ 10�3 1.06 ⇥ 10�2 1.04 ⇥ 10�2

nT,lag None 6.00 5.05 5.49

F̂a m3/s3 4.06 ⇥ 10�9 4.72 ⇥ 10�9 5.08 ⇥ 10�9

hFai m3/s3 2.3 ⇥ 10�13 1.43 ⇥ 10�13 1.40 ⇥ 10�13

F̂p m3/s3 4.77 ⇥ 10�8 5.95 ⇥ 10�8 5.88 ⇥ 10�8

hFpi m3/s3 2.3 ⇥ 10�8 4.21 ⇥ 10�8 1.43 ⇥ 10�8

F̂⌫ m3/s3 1.92 ⇥ 10�10 1.80 ⇥ 10�10 1.66 ⇥ 10�10

hF⌫i m3/s3 3.8 ⇥ 10�10 2.04 ⇥ 10�10 2.03 ⇥ 10�10

Table 4.1: Values of parameters for the constant N , single layer, and double layer experiments,
as well as the magnitude of the coe�cients of vertical energy flux per unit mass F̂ predicted by
(4.44) and the steady state measured values of these hFi found by integrating (4.43) across the top
boundary. Note that the values of hFai for the single- and double-layer experiments had variations
on the same order of magnitude as the reported values.

the parameters of each experiment. In all cases, F̂a = O(10�9), F̂p = O(10�8), and F̂⌫ = O(10�10);

the pressure term is indeed still expected be the largest contributor.

Energy Flux for a Constant Stratification Profile

While the predictions of the sizes of the terms in the vertical energy flux above assume ideal plane

waves, I expect the relative sizes of the terms to be comparable to the results of the numerical

experiments. As a test, I use a profile with the constant stratification of N = 1 s�1 allowing free

propagation through the domain. Without any stratification obstacles to cause reflections, I expect

the vertical energy flux to be negative for all points in time and across all depths.

In order to bring this test as close as possible to ideal, infinite plane waves, I neglect using the

windowing function Wbf (x) on the boundary forcing. In order to satisfy the periodic horizontal

boundary conditions, an integer number of horizontal wavelengths �x must fit within the horizontal

experiment domain, which I set to be from 0 to 0.5 m. Therefore, I set �x = 2⇡/kx equal to one

third of the horizontal extent. I choose ✓ = 45� which results in kx = kz = 37.7 m�1 and ! = 0.7071

s�1. The predictions of the energy flux coe�cients for those values are displayed in Table 4.1.

Internal wave energy propagates vertically at the vertical group velocity, which is the derivative

of ! with respect to kz (Cushman-Roisin & Beckers, 2011; Kundu et al., 2015). Using the dispersion

relation (4.5) with a constant N , this gives

cgz =
@!

@kz
= � !kz

(k2
x

+ k2
z
)

(4.45)
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which, with the chosen parameters, predicts a lag of nT,lag = 6 oscillation periods between the

energy flux through the top and bottom boundaries. Figure 4.11 shows the vertical energy flux

through constant stratification over 20 oscillation periods. The red dashed line in panel (a) shows a

slope corresponding to cgz. This line is o↵set horizontally to accentuate how closely it matches the

propagation of energy. In panel (b), the lag between the top and bottom boundaries in energy flux

is close to the predicted 6 periods.

Figure 4.11: Total vertical energy flux for a constant stratification profile. (a) hFzi across the z
domain and across time where the red dotted line shows the vertical group speed cgz. (b) The
running average of hFzi with a one oscillation period window through the top (z = 0) and bottom
(z = �0.5) surfaces over time. This experiment had ! = 0.7071 s�1, Â = 2 ⇥ 10�4, and was run for
20 oscillation periods.

The ramp in the forcing function is clearly evident in the energy flux through the top boundary.

After approximately 3 periods, the top surface reaches a steady state. After a lag of around 6

periods, the ramp is also evident in the bottom boundary. While there is a small transient over

the bottom boundary steady state, there is no evidence of interference of waves reflected from the

bottom of the bu↵er in the simulated domain after 20 periods.

Figure 4.12 shows plots of the three energy flux terms from (4.43) integrated across the top
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Figure 4.12: The components of vertical energy flux from (4.43) through the top boundary for a
constant stratification profile: (a) hFai, (b) hFpi, and (c) hF⌫i. Note the di↵erent vertical axis scales
between subplots and that these are the running averages with a one oscillation period window. This
experiment had ! = 0.7071 s�1, Â = 2 ⇥ 10�4, and was run for 20 oscillation periods.

boundary from the same experiment as Figure 4.11. Again, the ramp function over the first 3 periods

is evident. In the ideal case, because the terms were integrated over 3 horizontal wavelengths �x,

the only non-zero term should be pressure work. However, for these experiments I find steady state

values of hFa,ci = 2.3⇥10�13, hFp,ci = �2.3⇥10�8, and hF⌫,ci = �3.8⇥10�10 all with units m3/s3

or, equivalently, W m2/kg. From Table 4.1, the predicted magnitudes of the energy flux coe�cients
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are F̂a,c = 4.06 ⇥ 10�9 W m2/kg, F̂p,c = 4.77 ⇥ 10�8 W m2/kg, and F̂⌫,c = 1.92 ⇥ 10�10 W m2/kg.

While the magnitudes of the measured hFp,ci and hF⌫,ci match the predictions of equation (4.44), the

measured value hFa,ci is smaller than predicted, almost negligible compared to the other energy flux

components. The reason for this discrepancy is unclear. However, the vertical energy flux through

the top boundary due to the pressure work, shown in Figure 4.12, makes up the vast majority of

the total energy flux, shown in Figure 4.11, as predicted by integrating (4.43).

4.5.3 Results

Comparison to previous work

In both laboratory experiments and theoretical experiments, G16 saw the majority of the wave

beam reflect o↵ the single layer and two distinct reflections and transmissions for the double layer.

I reproduce these results from their Figure 5 below in Figure 4.13(a,c). All of the major features

were successfully reproduced by Foran (2017) by recreating the stratification profiles as closely as

possible and tuning ! until the correct angle was reached.

Figure 4.13: The wave tank results from G16 for the (a) single and (c) double mixed layer experi-
ments, adapted from their Figure 5. The results of my numerical experiments for the (b) single- and
(d) double-mixed-layer cases run with !1 = 0.67 s�1 and !1 = 0.72 s�1, respectively. The snapshot
in (b) was taken at t/T = 12.407 and the snapshot in (d) was taken at t/T = 12.476, both with
colorbars saturated at ±1.3 ⇥ 10�3 m/s.

By following Foran (2017), I also successfully reproduce the major features of the experiments
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by G16, as seen in Figure 4.13(b,d). In Figure 4.13(b), the wave beam mostly reflects o↵ the single

layer, with a small amount transmitted. In Figure 4.13(d), the wave beam has both reflection and

transmission from both mixed layers.

In Figure 4.13(a,c), G16 normalizes w in the colorbar by the “characteristic vertical velocity

amplitude A!” where A = 7.07 mm is the amplitude and ! is the frequency of the wave-generating

cylinder’s oscillations. Having no physical displacement distance of a wave-maker in my experiments,

I do not normalize the vertical velocity. However, assuming the values of ! used by G16 were similar

to those I use, the magnitude of the vertical velocities in their experiments and mine are both on

the order of O(10�3) m/s.

A reasonable estimate for the magnitude of vertical velocities I should expect can be found from

the coe�cient of the polarization relation for vertical velocity (4.35b) Âg!/N2
0 , either 1.68⇥10�3 m/s

for the single layer case or 1.80⇥10�3 m/s for the double layer case. These match the magnitudes of

vertical velocities in the numerical experiments however, I saturate the color bars in Figure 4.13(b,d)

at ±1.3 ⇥ 10�3 m/s to more clearly show the transmitted wave beams, which are low in amplitude.

In the measurements taken by G16, they sampled the wave tank with a grid of 2042 by 2042

pixels across the measurement domain. This resolution was more than fine enough to resolve the

features of the internal wave interactions in the tank. While I had 512 by 512 pixels total across

my simulation domain, in the vertical, 40 were in the sponge layer below and only one third of the

horizontal extent was used, giving the measurement domain a resolution of 170 by 472. However,

even with relatively low resolution, the numerical experiments still reproduce the major qualitative

features as well as match the magnitude of the vertical velocity field while remaining numerically

stable.

Energy Flux for Single and Double Mixed Layer Profiles

Figure 4.14 shows the vertical energy flux over 10 oscillation periods through both the single- and

double-layer stratification profiles. Because the boundary forcing is windowed in the x direction for

these experiments, the vertical energy flux oscillates in time as can be seen in panels (a,b). These

oscillations occur at twice the forcing frequency, as predicted by (4.44). In panels (c,d), I smooth

out these oscillations by taking the running average over one oscillation period, which is why those

plots stop at t/T = 9 instead of t/T = 10.

The ramp in the forcing function is again evident as the vertical energy flux through the top

surface reaches its maximum magnitude around t/T = 3. Predictions of the lag between the top

and bottom boundaries using (4.45) are nT,lag,1 = 5.05 and nT,lag,2 = 5.49 (see Table 4.1). These

predictions, however, assume a constant stratification which is not the case for these experiments.

The axis bounds for the vertical energy flux through the bottom surface covers an order of magnitude

larger range of values for the constant stratification case in Figure 4.11(b) compared to the single- and

double-layers cases in Figure 4.14(c,d). By contrast, the scales for the vertical energy flux through

the top surface are close between the two. From this, I conclude that the presence of stratification

has had an e↵ect on the propagation of the vertical energy flux. Whether this e↵ect was to dampen

or merely delay the propagation is unclear as the experiments for the single and double layer cases

were not run long enough for the vertical energy flux through the bottom surface to reach a steady

state.

Figure 4.15 shows plots the running average with a one oscillation period window of the three
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Figure 4.14: Total vertical energy flux for the single (a,c) and double (b,d) layer stratification
profiles. (a,b) hFzi across the z domain and across time. (c,d) The running average of hFzi with a
one oscillation period window through the top (z = 0) and bottom (z = �0.5) surfaces over time.
These experiments had (a,c) ! = 0.67 s�1 or (b,d) ! = 0.71 s�1, Â = 2.3 ⇥ 10�4, and were run for
10 oscillation periods.

energy flux terms from (4.43) integrated across the top boundary from the same single- and double-

layer experiments shown in Figure 4.14. Over the first three periods, the e↵ect of the ramp function

is evident for hFpi and hF⌫i in both cases. For hFai, there are significant oscillations within the

ramping periods which I attribute to the windowing of the boundary forcing in the x direction.

These oscillations are on the order of 10�11 W m2/kg. However, the values after t/T = 4 are much

smaller, with an average of hFa,1i = 1.4 ⇥ 10�13 W m2/kg for the single-layer case in panel (a) and

hFa,2i = 1.4 ⇥ 10�13 W m2/kg for the double-layer case. Similar to the constant stratification case,

these are much smaller values than predicted by (4.44). While these values match the magnitude

of hFa,ci, they have large standard deviations, 1.0 ⇥ 10�13 W m2/kg for the single-layer case and

2.0 ⇥ 10�13 W m2/kg for the double layer. Because the values and standard deviations of hFa,1i
and hFa,2i are all on the order of O(10�13) W m2/kg and this is orders of magnitude less than the

contributions to the overall vertical energy flux from pressure and viscosity, I conclude that the

contributions from advection are e↵ectively zero.

The steady state values of the vertical energy flux due to pressure and viscosity match in magni-

tude to both the constant stratification experiment and the predictions from (4.44). For the single-

layer experiment, I find hFp,1i = �4.21 ⇥ 10�8 W m2/kg and hF⌫,1i = �2.04 ⇥ 10�10 W m2/kg. For
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Figure 4.15: The components of vertical energy flux from (4.43) through the top boundary for the
single (a,c,e) and double (b,d,f) layer stratification profiles: (a,b) hFai, (c,d) hFpi, and (e,f) hF⌫i.
Note the di↵erent vertical axis scales between subplots and that these are the running averages with
a one oscillation period window. These experiments had (a,c,e) ! = 0.67 s�1 or (b,d,f) ! = 0.71
s�1, Â = 2.3 ⇥ 10�4, and were run for 10 oscillation periods.

the double-layer experiment, I find hFp,2i = �1.43 ⇥ 10�8 W m2/kg, and hF⌫,3i = �2.03 ⇥ 10�10

W m2/kg. See Table 4.1 for a summary of these values. While these values do vary noticeably after

t/T = 4, the magnitude of these variations are two orders of magnitude smaller than the steady

state values. I find again, as I did for the constant stratification experiment, that the total vertical

energy flux is almost entirely due to the vertical energy flux from pressure work, as predicted by

integrating (4.43).

4.6 Discussion

In this chapter, I performed numerical experiments of internal waves interacting with stratification

structures in both one and two spatial dimensions using the Dedalus framework. This was moti-

vated by the question of how much internal waves might be able to transmit through thermohaline

staircases in the Arctic. For the experiments in one spatial dimension, I found the transmission

coe�cient across values of kxL, the ratio of layer thickness to horizontal wavelength, from 0 to 5 for

waves propagating at an angle of 45� through stratification structures of one to five layers. I found

the case of one mixed layer matches with analytical theory, monotonically decreasing in transmission
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as kxL increased. For multiple layers, I found peaks in transmission at intermediate values of kxL.

These features are predicted by analytical theory as well, however I could only make qualitative

comparisons as to their locations and magnitudes as theory assumes infinitely thin interfaces be-

tween layers (Sutherland, 2016). I found that the location of the largest peak in transmission for

each number of layers decreased in kxL as the number of layers increased. However, I was unable to

confirm whether this matches predictions from theory. My results agree quantitatively with those

of G16 who used a finite-thickness interface when calculating transmission for a two-layer scenario.

With my experiments in two spatial dimensions, I was successfully able to reproduce the major

features of the wave tank experiments by G16. I saw the same pattern of reflection and transmission

as well as the same magnitude of the vertical velocity field. In these numerical experiments, the

values of vertical energy flux through the top surface due to pressure and viscosity I calculated

match theoretical predictions. The values of the vertical energy flux due to advection I calculated

were magnitudes smaller than predicted by theory. However, the total values of vertical energy

flux I found were almost entirely due to pressure, in agreement with theory. Overall, I believe

these results show that numerical experiments of this nature can be a reliable tool for estimating

the impact of staircase-like stratification structures on the propagation of internal waves and the

associated vertical energy flux.

There are many avenues to build upon this work. The codes used in this work could be im-

proved to reduce aliasing in order to handle waves forced at higher amplitudes. This could be done

using high-performance computing resources to increase the spatial and temporal resolution, using

an adaptive time stepping procedure, or modifying the implementation of viscosity to increase dis-

sipation of unwanted waves. Many parameters could be adjusted to create numerical experiments

that more closely resemble the physical realities of the Arctic Ocean. This includes considerations

such as the stratification structure, the inclusion of the Coriolis force, and the specific properties of

the waves which interact with the stratification.

The stratification structure used in these experiments was highly idealized. In the Arctic Ocean,

thermohaline staircases generally consist of dozens of well-mixed layers that are several meters

thick separated by interfaces ranging 0.3–0.7 m in thickness (Shibley et al., 2020) with a buoyancy

frequency on the order of N = O(10�2) rad/s while for the staircase region overall, N is on the

order of O(10�3) (Padman & Dillon, 1987; Shibley & Timmermans, 2022). Future experiments

could better approximate this by adding more layers, using a more representative ratio of layer to

interface thicknesses Ri, and scaling the magnitude of N within interfaces appropriately. One could

also directly use a measured stratification profile from the Arctic Ocean, as did G16. However, care

must be taken that the stratification profile has high enough resolution to accurately represent the

thin interfaces, which is not the case for ITPs (Shibley et al., 2020). The profile G16 used was from

the 2005 Beringia expedition which had a vertical resolution magnitudes finer than that of ITPs

(Rainville & Winsor, 2008).

The e↵ect of the Coriolis force increases with latitude, and, in the Arctic Ocean, is certainly

not negligible. Both in the numerical experiments G16 ran with the profile from the 2005 Beringia

expedition and in the study by Sutherland (2016), the authors used an inviscid yet rotating version

of the streamfunction equation (4.3). As far as I am aware, no study has yet investigated the

interactions of internal waves and staircase-like stratification structures while including both the

e↵ects of rotation and viscosity. While the e↵ects of viscosity are generally considered to be negligible
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at the scales which rotation becomes important, the flexibility of Dedalus makes it straight-forward

to represent a system with both e↵ects included.

As noted in both G16 and Sutherland (2016), when N > f as it generally is in the Arctic

Ocean, the inclusion of the Coriolis force sets a lower bound on the frequencies of waves that can be

transmitted; they are evanescent outside the range f < ! < N . In the Canada Basin, f ⇡ 1.42⇥10�4

s�1. Near-inertial waves with frequencies close to f dominate the internal wave field in the Arctic

and typically have vertical wavelengths �z on the order of 10’s of meters and horizontal wavelengths

�x on the order of kilometers (Dosser et al., 2014; Ghaemsaidi et al., 2016). This results in angles of

propagation ✓ much shallower than I used in my experiments. In all my experiments, I set both N

and ! to be O(1). The value of �z I used in the one-dimensional experiments was 1 m while, for the

two-dimensional experiments, I set �z on the order of 3 cm to match the wave tank experiments.

According to the analytical solution for one non-rotating, well-mixed layer (4.26) (Sutherland &

Yewchuk, 2004), transmission may well remain comparable as both the ratio of the layer thickness

to horizontal wavelength kxL = 2⇡L/�z and the angle of propagation ✓ decrease from values used

in wave tank experiments towards those more realistic for the Arctic. When adding more layers and

considering rotation, the situation is more complicated. However, numerical experiments in a flexible

framework such as the one I’ve used in this chapter o↵er a way to investigate the transmission of

internal waves in more realistic scenarios.

In the numerical experiments I presented here as well in those of Sutherland & Yewchuk (2004),

G16, and Sutherland (2016), only weakly-nonlinear, monochromatic waves (containing only one

frequency) were considered. The internal wave field of the Arctic contains many di↵erent frequencies.

However, even an initially monochromatic wave can produce waves of di↵erent frequencies through

the process of harmonic generation. Using a weakly nonlinear theory that includes rotation but

neglects viscosity, Wunsch (2018) investigated harmonic generation from internal waves incident

upon density staircases, finding analytical expressions for the amplitude of the harmonic at the top

and bottom of a staircase with an arbitrary number of identical stair-steps. Other factors that

would emulate more realistic waves and have been shown to a↵ect internal wave interactions with

stratification are having waves be localized in time (Supekar & Peacock, 2019) and axisymmetric

(Boury et al., 2019).
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Chapter 5

Conclusions

5.1 Summary of results

Thermohaline staircases have been observed in the Arctic Ocean for over 50 years. Despite this, very

little is known about how these remarkably coherent structures change over long periods of time.

With Arctic Sea ice in decline, there is concern that the resulting increase in wind-driven internal

waves could a↵ect vertical mixing, allowing energy to transfer from the surface to the interior.

However, the stratification of thermohaline staircases make it unclear as to what extent internal

waves may be able to propagate downwards. This thesis examines thermohaline staircases in the

Canada Basin of the Arctic Ocean, their evolution on a decadal scale, and their interactions with

internal waves.

The layers in thermohaline staircases have been shown to extend horizontally for hundreds of

kilometers (Schmitt et al., 1987; Timmermans et al., 2003, 2008; Lu et al., 2022). Several studies

have developed algorithmic approaches to detect staircase steps (Timmermans et al., 2008; Shibley

et al., 2017; van der Boog, Otto Koetsier, et al., 2021; Lu et al., 2022). However, as all these

approaches treat each profile independently, no analysis can be done on the horizontal properties

of any particular layer. A few studies have developed techniques to connect layers across di↵erent

profiles, but they have either relied on manual inspection, setting precise gradient thresholds, or

both (Padman & Dillon, 1988; Lu et al., 2022).

In Chapter 2, I presented a novel method based on the Hierarchical Density-Based Spatial Clus-

tering of Applications with Noise (HDBSCAN) algorithm, which automatically detects and connects

thermohaline staircase layers across many profiles. This method requires only a selection of a salinity

range in which to search and an estimate of the typical layer thickness. High precision is not required

for either and estimates could be made from a brief inspection of a dataset or from previous studies.

This is in comparison to methods used previously to identify staircases, which require a choice of one

or multiple thresholds on gradients in temperature, salinity, or density (Timmermans et al., 2008;

Shibley et al., 2017; van der Boog, Otto Koetsier, et al., 2021; Lu et al., 2022). Choosing appropriate

values for these thresholds requires precise knowledge of certain properties in the staircases which are

to be detected. I provided an algorithmic approach to selecting the one required hyperparameter for

HDBSCAN, mpts, and developed a method of evaluating the subsequent clusters based on physical

properties, marking those which do not meet expectations as outliers. Using this clustering method,
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I was able to automatically track individual staircase layers for Ice-Tethered Profiler (ITP) 2 which

ran for 40 days and for ITP3 which traced a 2541 km-long track over 382 days with the longest span

between any two, not necessarily consecutive, profiles being 441 km.

I reproduced several key results from previous studies. By introducing the normalized inter-

cluster range IRv, I quantitatively confirmed a pattern noted in previous studies that the variations

in pressure and temperature within layers is larger than with salinity (Timmermans et al., 2008; Lu

et al., 2022). The salinity ranges for each layer had very little overlap, with the di↵erence in salinity

between neighboring clusters approximately seven times larger than salinity variations within any

particular layer. This is in agreement with Lu et al. (2022) and supports their conclusion that salinity

is the most appropriate variable by which to identify individual layers. For the lateral density ratio

RL, I found that the values matched the magnitude reported by Timmermans et al. (2008). However,

I noted a possible dependence of the lateral density ratio RL on pressure, the reason for which is

unclear and worthy of further study. Along with this result, I found instances where outliers in

IRSP revealed features called remnant intrusions and outliers in RL revealed occurrences of layers

splitting or merging. As the results of this study were in line with those of previous studies, this

suggests that this method could be applied to datasets with larger numbers of points.

The study presented in Chapter 3 was such an extension. Using the method based upon the

HDBSCAN clustering algorithm, I identified thermohaline staircase layers across 17 years of data

within the Beaufort Gyre Region (BGR) including 60 di↵erent ITPs with 15,202 individual profiles

for a total of 12,744,846 data points. This study filled a gap in the literature for thermohaline stair-

cases in the Arctic Ocean. Many authors have noted the incredible persistence of these structures,

particularly in the Canada Basin. Since they were first measured at Ice Island T-3 (Neal et al.,

1969; Neshyba et al., 1971; Neal & Neshyba, 1973), they have since been notable features in the pro-

files from such major e↵orts as the Arctic Internal Wave Experiment (AIWEX) (1985) (Padman &

Dillon, 1987, 1988, 1989), the Surface Heat Budget of the Arctic (SHEBA) experiment (1997–1998)

(Shaw & Stanton, 2014), and the ITP program (2004-present) (Krishfield et al., 2008; Toole et al.,

2011). Studies by Polyakov, Pnyushkov, Rembe, et al. (2012), Ménesguen et al. (2022), and Lu et

al. (2022) tracked individual staircase layers, however none for a period longer than four years. In

Chapter 3, I established that individual layers can indeed stay coherent on a decadal time scale.

As noted by authors in previous studies, I found the layers to have remarkable lateral coherence,

on the order of 1000 km, with an aspect ratio on the order of 106 (Timmermans et al., 2008; Toole

et al., 2011; Bebieva & Timmermans, 2019; Lu et al., 2022). I also found layers to have notable

geographic distributions in pressure and temperature. To characterize these spatial variations, I fit

a two-dimensional polynomial up to third order over latitude and longitude. From these, I found the

same bowl-shaped distribution of pressure as noted by Lu et al. (2022) where each layer is deeper

in the center of the BGR, growing shallower towards the edges. I noted that the spatial pattern of

temperature changed with depth, speculating as Lu et al. (2022) did that this could be due to the

di↵ering influence of the water masses above and below, the Lower Halocline Water (LHW) and the

Atlantic Water (AW).

I found those bounding water masses to be sinking at rates of 2.91 and 5.32 dbar per year for the

LHW and AW, respectively. On average, the layers I detected were sinking at a rate of 2.24 dbar per

year and all of these rates match the reported range of cumulative downwelling in the BGR of 2–5

meters per year (Meneghello et al., 2018; Proshutinsky et al., 2019; Timmermans & Toole, 2023),
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implying the staircase layers are passively following the water column as a whole. I found layers

near the top to be sinking faster than those near the bottom, implying an overall compression of the

staircase. The average layer thickness I found was 1.55 dbar and thicknesses generally increase with

depth, in line with previous studies (Neal et al., 1969; Padman & Dillon, 1987; Guo et al., 2016;

Timmermans et al., 2008; Shibley et al., 2017; Shibley & Timmermans, 2019; Lu et al., 2022). While

not conclusive, I found that layers are either thinning or staying the same thickness with time.

The AW has been warming over the past few decades and, at the same time, so too has a layer

of water from the Pacific, which sits above the LHW in the water column (Timmermans et al., 2018;

Dosser et al., 2021). While these water masses above and below the pycnocline have been warming, I

found that the trend in time for each layer’s temperature changes signs from top to bottom. That is,

layers near the top of the staircase are warming over time while layers near the bottom are cooling,

with a compound trend of (�2.29 ± 0.23) ⇥ 10�4 �C/yr/dbar. Using these trends in temperature, I

found the average net heat flux for each layer, finding the upper layers to have a positive heat flux

and lower layers with negative heat flux. The trend was (�2.82 ± 0.39) ⇥ 10�5 W/m2/dbar with a

total of 0.054 W/m2 across the staircase, matching estimates from previous studies (Guthrie et al.,

2015; Shibley & Timmermans, 2019).

The development of this method using HDBSCAN presented here contributes to the wider con-

text of clustering algorithms being applied in oceanographic studies (e.g., Koszalka & LaCasce, 2010;

Espejo et al., 2014; Maze et al., 2017; C. Ma et al., 2019; Jones et al., 2019; Houghton & Wilson,

2020; Rosso et al., 2020; Desbruyères et al., 2021; Sonnewald et al., 2021). As the size of oceano-

graphic datasets continue to grow larger and more complex, the continued development and usage

of clustering algorithms could o↵er e�cient ways to discover and analyze a wide variety of features

and phenomena.

While the stratification of thermohaline staircases contain layers where internal waves become

evanescent, acting as a series of barriers to their propagation, the phenomenon of internal grav-

ity wave tunnelling allows certain waves to transmit through particular stratification configura-

tions (Eckart, 1961; Sutherland & Yewchuk, 2004; Ghaemsaidi et al., 2016; Sutherland, 2016). In

Chapter 4, I performed numerical experiments using the Dedalus framework to investigate this

phenomenon in both one-dimensional and two-dimensional configurations.

For the experiments in one spatial dimension, I quantified the transmission coe�cient for waves

propagating at an angle of 45� through stratification structures with up to five well-mixed layers

separated by finite-width interfaces. These mixed layers had a stratification frequency N = 0,

meaning the waves become evanescent, and a thickness based upon kxL, the ratio of the layer thick-

ness to horizontal wavelength. For the case of one layer, the transmission coe�cient monotonically

decreased from perfect transmission at kxL = 0 to negligible transmission at kxL = 5, matching

analytical predictions. In stratification structures with multiple layers, I found significant peaks in

transmission at values of kxL between 0 and 5 and the value of kxL for the largest of these peaks

decreased as more layers were added. Ghaemsaidi et al. (2016) numerically solved for the values of

the transmission coe�cient in the cases of one and two mixed layers. As both their setup and mine

used finite-width interfaces, I was able to make quantitative comparisons and showed the results

agreed. While Sutherland (2016) presented results for cases with more layers, I was only able to

note the qualitative agreement in transmission patterns as infinitely thin interfaces were used in that

study.
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My numerical experiments in two spatial dimensions were focused on replicating a wave tank

experiment performed by Ghaemsaidi et al. (2016). I successfully reproduced the pattern of reflection

and transmission, finding the same magnitude of the vertical velocity field. I extended this work by

calculating the vertical energy flux. In agreement with theory, I found that the total vertical energy

flux through the top surface was almost entirely due to pressure. As these numerical experiments

were able to reproduce the results from theory and previous studies, I believe I have shown they can

be a valuable tool to analyze the impact of stratification structures that resemble staircases on the

propagation of internal waves with the potential to extend to scales that would be impractical for

laboratory experiments.

5.2 Future work

In this thesis, I detailed studies of thermohaline staircases, their detection in sets of hydrographic

profile data, their evolution over decadal time scales, and their interactions with internal waves. For

each, I presented results that both replicated those from previous studies and those that are novel.

All o↵er avenues for further study and improvement of the methods used.

In Chapter 2, I demonstrated how my method based on the HDBSCAN clustering algorithm

could automatically identify staircase layers in datasets of up to 1,532 profiles spanning up to 382

days. I extended this work in Chapter 3, applying the clustering algorithm to a dataset which has

ten times the number of profiles and spans 17 years. These chapters show the potential of such a

method of layer identification which could be extended in many new directions.

While, in this thesis, I have been solely concerned with thermohaline staircases in the upper

Arctic Ocean, the clustering method could be used in di↵erent oceanic regimes. Staircase structures

exist in the deep Arctic Ocean, at depths of 2000–3000 m (Timmermans et al., 2003), and the

Argo network of autonomous profiling floats, which has been active for over 20 years, has measured

staircases in di↵erent regions all across the world’s oceans (van der Boog, Dijkstra, et al., 2021). I

have focused on capturing the patterns that thermohaline staircases make in temperature–salinity

(T–S) space. However, the patterns which di↵erent types of layers or water masses make in T–S

space, or even T–O2 space (Rosso et al., 2020), could also be captured with this method.

As mentioned in Chapter 2, I found the clustering results to be robust even when subsampling

profiles to every second, third, or fourth point, e↵ectively reducing the vertical resolution. This

follows from the fact that the clustering method does not treat profiles individually, only requiring

that a su�cient number of points be available to detect clusters. This suggests that this method

may be able to identify staircase layers in a set of profiles that each have too coarse resolution to

resolve individual steps, or that a mix of di↵erent resolution profiles could be combined into one

dataset when identifying layers.

This clustering method could be used in conjunction with other staircase detection methods,

either as a first pass to identify where a more detailed process should be focused, or as a way

to connect layer points identified by another method across di↵erent profiles. The results from

Chapter 2 revealed instances of layer splitting or merging, as well as remnant intrusions. There is a

possibility that this method could be modified to specifically identify such occurrences.

There are several technical aspects in which the clustering method could be improved. One such

area is the process of selecting mpts, the one required hyperparameter for HDBSCAN. The process I
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presented involved comparing the Density-Based Clustering Validation (DBCV) score for clusterings

of the same data across a range of di↵erent values of mpts. The DBCV score gives an estimate as to

the di↵erence between the least dense regions within clusters and the most dense regions of noise,

with a higher value indicating the clusters are more distinct from the noise. However, as mentioned

in Chapter 3, a higher DBCV score does not always correspond to a clustering that better captures

the layers. A better algorithm for selecting the most appropriate mpts value could use a di↵erent

clustering validation score, or perhaps a di↵erent method of validation altogether. It might also

incorporate the rough correlation I found where datasets with more points generally require a larger

value of mpts to reasonably capture layers. Additionally, finding an appropriate value of mpts

involves increasingly more computations for larger datasets as larger ranges of mpts values might be

considered. As only one of these many clusterings is ultimately chosen as the result, an ideal method

of selecting mpts would limit the total number of clusterings which need be compared to reduce the

computational resources required.

Improvements could also be made to better capture the trends in time for layers. In Chapter 3,

I found all trends using the ordinary least squares regression. This was chosen as a simple, well-

known method, but other types of regression may be more appropriate for particular circumstances.

Di↵erent clusters spanned di↵erent amounts of time within the 17-year period analyzed. This was

mainly due to the method I used to connect clusters across each year-long time period, assigning

di↵erent IDs to clusters which erroneously spanned more than one layer in certain periods. While

the need to manually connect clusters between time periods could be avoided by instead clustering

the entire 17 years at once, there still would be the possibility of particular clusters spanning only

short amounts of time. Clusters which span shorter periods are more susceptible to extreme values

a↵ecting their calculated trend in time, something which I did not account for. More robust statistics

of the trends could be found by accounting for this source of uncertainty. Another improvement

could be made to the estimates of net heat flux by combining the component values at every point

in time and then finding the trend rather than calculating the value for each cluster using already

time-averaged components.

In Chapter 4, I presented the results of numerical experiments developed in the Dedalus frame-

work. By reproducing the results of previous studies, I demonstrated how such numerical experi-

ments could be reliable tools to investigate the interactions between internal waves and stratification

structures. Numerical experiments have the potential to provide valuable insight into processes on

scales which are too large for laboratory experiments and too small to be resolved in current global

climate models.

An obvious extension to these experiments would be to use parameters which match more closely

with the Arctic Ocean’s physical reality. Generally, the angles of propagation ✓ for internal waves

in the Arctic are much shallower than those I used (Dosser et al., 2014; Ghaemsaidi et al., 2016).

In my experiments, I set the thicknesses of the layers and the intervening interfaces to be on the

same order of magnitude, matching the experiments of Ghaemsaidi et al. (2016). However, observed

thermohaline staircases generally have layers which are one to two orders of magnitude thicker

than the interfaces (Shibley et al., 2020) A future study could set this ratio of layer to interface

thickness, as well as the overall magnitude of the buoyancy frequency N , to better match those

found in the Arctic Ocean. Both could be met by directly using observed profiles, as Ghaemsaidi et

al. (2016) did with measurements from the 2005 Beringia expedition. However, the profiles would
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need fine enough vertical resolution to accurately capture the details of the interfaces, which is not

possible with ITP data (Shibley et al., 2020). My experiments focused on reproducing laboratory

results and thus neglected the Coriolis force. However, in the Arctic, this e↵ect is not negligible

and both in the study by Sutherland (2016) and the experiment run by Ghaemsaidi et al. (2016)

on the Beringia profile, an inviscid yet rotating system was considered. The e↵ects of viscosity are

usually considered negligible at the scales where rotation is important, but the flexibility of the

Dedalus framework provides a straight-forward way to include both. To my knowledge, no study

has considered internal wave transmission in a system with the e↵ects of both viscosity and rotation.

The codes used for the numerical experiments could also be improved. By using high-performance

computing, the spatial and temporal resolutions could be increased. An adaptive time stepping pro-

cedure could be utilized. The manner in which viscosity is implemented could be modified to increase

dissipation of unwanted waves. Such stabilization measures may allow for the forcing of waves at

higher amplitudes. The codes could also be modified to allow for polychromatic waves (containing

more than one frequency) or non-linear interactions such as harmonic generation (Bourget et al.,

2013; Wunsch, 2018). Additionally, the forced waves could be modified to more accurately represent

reality by being localized in time or axisymmetric, both factors known to a↵ect the interactions

between internal waves and stratification structures (Supekar & Peacock, 2019; Boury et al., 2019).
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Appendix A

Supplementary Materials for:

Unsupervised clustering identifies

thermohaline staircases in the

Canada Basin of the Arctic Ocean

A.1 Practical salinity SP vs. absolute salinity SA

TEOS-10 recommends storing values of practical salinity SP in databases in order to maintain

continuity with older records and also because SP is practically a measured quantity (McDougall

& Barker, 2011). In contrast, absolute salinity SA is a calculated variable defined as “the mass

fraction of dissolved non-H2O material in a seawater sample at its temperature and pressure,” and

is recommended for use in publications (IOC, 2010). For this study, we ultimately chose to work

with SP because the two studies to which we make direct comparisons, T08 and L22, used SP .

Specifically, when we define the ranges of SP to filter to before running the clustering algorithm, we

were able to directly take the values of SP from T08 and L22 without having to first convert to SA.

To investigate the di↵erence between using SP vs. SA on our results, we recreated Figure 2.2,

but replacing SP with SA on all the axes, as shown in Figure A.1. We still filtered the ITP2 data

to be in the practical salinity range SP 34.05–34.75 g/kg to make sure we used the same data

points. However, then we plotted those data points in ⇥0–SA space in panel (c) to run the clustering

algorithm using the same mpts = 170. This resulted in 38 clusters (as opposed to 36) with a DBCV

score of 0.2177 (as opposed to 0.3034). In panel (d), the values of RL displayed made minor changes

of (from left to right): +0.39, -0.04, -0.03, -0.03, -0.01, +0.14, and +0.07.

We also reproduced Figure 2.5(a,b) in Figure A.2 using the clustering shown in Figure A.1. The

two outliers in IRSA in Figure A.2(a) do not correspond to outliers in Figure 2.5(a) because these

have very high IRSA , over 20, which skews the mean as used when calculating the z-score. The

dark green star and the red triangle in Figure A.2(a) correspond to the two outliers in Figure 2.5(a)

where they are marked by an orange 4-pointed star and a green “⇥”. These pairs of points have

very similar values of IRSA and IRSP , respectively.
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Figure A.1: Results from the clustering algorithm with mpts = 170 and ` = 25 dbar run on 53042
data points in the SP range 34.05–34.75 g/kg from all up-going ITP2 profiles. This is the same as
Figure 2.2, but the clustering algorithm was run on absolute salinity SA instead of practical salinity
SP . (a) The data in ⇥–SA space with dashed lines of constant potential density anomaly (kg m�3)
referenced to the surface. (b) Profiles 183, 185, and 187 from ITP2 in a limited pressure range to
show detail. Each profile is o↵set in SA for clarity. (c) The spatial arrangement used as input for the
algorithm where the gray points are noise and each color-marker combination indicates a cluster.
The same color-marker combinations are used in each panel and the markers in panels (c) and (d)
are at the cluster average for each axis. (d) A subset of the data in ↵⇥–�SA space with the linear
regression line and inverse slope (RL) noted for each individual cluster and with dashed lines of
slope ↵⇥/�SA = 1

In Figure A.2(b), we see that there are two outliers in RL circled, both of which correspond to

outliers found when using SP . The purple star in Figure A.2(b) corresponds to the orange left half

circle in Figure 2.5(b), while the dark green “Y” in Figure A.2(b) corresponds to the teal “⇥” in

Figure 2.5(b). A notable di↵erence is that the purple star outlier in Figure 2.5(b) (which spans

SP = 34.233–34.261 in Figure 2.2(c) encompassing what should be two distinct clusters) is no longer

present in Figure A.2(b). Comparing Figures 2.2(c) and A.1(c), we see that it is now replaced by

two clusters, the dark green left half circle and the red right half circle, neither of which are outliers

in RL.

We also see that the 2nd-degree polynomial fit in Figure A.2(b) is similar to that in Figure 2.5(b).

We conclude that the di↵erence between using SA vs. SP does not significantly a↵ect our results.
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Figure A.2: The value of each cluster’s normalized inter-cluster range for salinity IRSA in (a) and
the lateral density ratio RL in (b) as a function of the cluster’s average pressure for ITP2. This is
the same as Figure 2.5(a,b), but the clustering algorithm was run on absolute salinity SA instead of
practical salinity SP . The colors and markers are the same as the clustering shown in Figure A.1.
Markers circled in red indicate outliers with a z-score greater than 2.

A.2 Varying the value of `

We define the local anomaly of a temperature profile ⇥0 as the original profile minus a version of

that profile smoothed with a moving average. Subtracting a smoothed profile from the original

profile in this way gives temperature di↵erences that are centered around zero and leads to more

continuous clusters (compare Figures 2.2(a) and 2.2(c)), allowing HDBSCAN to group these points

more accurately.

When calculating ⇥0 with Equation 3.1, we use a moving average with window size `, so the

resulting profile has dead regions `/2 in size with no data at the top and bottom. Therefore, `

cannot be larger than twice the distance available in the profile, either above or below the pressure

range to be analyzed, whichever is smaller. As ` increases, the moving average profile gets flatter,

meaning ⇥0 becomes closer to the original profile, just shifted in temperature space. Choosing a

very small ` will give a moving average temperature profile that will closely match the original

temperature profile, meaning that the ⇥0 profile will be very close to zero. This eliminates any e↵ect

temperature might have on the clustering results.

In Figure A.3, we show four pairs of profiles, restricted to the 200-400 dbar pressure range to

show detail. All profiles are number 185 from ITP2, the example profile featured in Figure 2.2(b).

Each panel shows both the original profile and the moving average profile with the values of `: 2.5,

12.5, 25, and 37.5 dbar. The original and moving average profiles are slightly o↵set for clarity. When

` = 2.5 dbar, the moving average profile still clearly contains some of the larger stair steps. When

` = 37.5 dbar, almost all of the features in the original profile are gone.

We noted a feature in 2(c) where the cluster average ⇥0 increases starting at SP ⇡ 34.63 g/kg

until it jumps sharply to negative ⇥0 values around SP ⇡ 34.67 g/kg, then increases again until
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Figure A.3: The original profile 185 from ITP2 and the smoothed version of that profile for 4 di↵erent
values of `: (a) 2.5 dbar, (b) 12.5 dbar, (c) 25 dbar, and (d) 37.5 dbar. The ⇥ axes on each panel
are o↵set slightly to show both lines.

SP ⇡ 34.72 g/kg. This zig-zag pattern is due to the choice of ` and the presence of the AW

subsurface temperature maximum in ⇥ profiles. In Figure A.4, we show the ITP2 data used in the

study in ⇥0–SP space for the same 4 values of ` as in Figure A.3. This clearly illustrates that the

zig-zag pattern is not present for low ` and becomes more pronounced as ` increases.

For each panel in Figure A.4, we ran a parameter sweep across mpts similar to that shown in

Figure 2.3(b), selecting the value of mpts which gave the highest DBCV, as shown in the legends.

If we always choose ` to be approximately five times the typical layer thickness, then the panels in

Figure A.4 represent clusterings for thickness estimates of 0.5 dbar, 2.5 dbar, 5 dbar, and 7.5 dbar.

We conclude that the results are not significantly sensitive to this typical layer thickness estimate as

the number of clusters and their positions along the SP axis are generally consistent across the four

values of `, especially between SP ⇡ 34.18 g/kg and SP ⇡ 34.62 g/kg. We find the most reasonable

clusterings occur when ` is chosen to be small enough that the features outside the pressure range

we analyze do not significantly a↵ect the moving average, yet large enough that the stair steps are

completely smoothed out.
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Figure A.4: Clustered data from ITP2 in the salinity range 34.05—34.75 g/kg plotted in ⇥0–SP space
for 4 di↵erent values of `: (a) 2.5 dbar, (b) 12.5 dbar, (c) 25 dbar (the same as in Figure 2.2(c)),
and (d) 37.5 dbar, where the gray points are noise and each color-marker combination indicates a
cluster.

A.3 Optional parameters for HDBSCAN

While mpts has the most significant e↵ect on the clustering results, there are several other parameters

which could be adjusted when using the “hdbscan” Python package. In each case, we chose to follow

the recommendation of the authors of the algorithm (Campello et al., 2013; Moulavi et al., 2014).

The default distance metric is Euclidean and, as we cluster in a two dimensional space of continuous

numerical variables, we maintain this selection. For the cluster selection method, we chose Leaf

over Excess of Mass to avoid the results collapsing into fewer, larger clusters. HDBSCAN can

be combined with DBSCAN by setting a threshold of cluster selection "clSelect to explicitly group

clusters a certain distance apart. However, we chose the default behavior of HDBSCAN which

automatically identifies the values of " which give the most stable clusters. HDBSCAN considers

a neighborhood to be dense when mpts points are within a certain distance ". While mpts, known

as the minimum samples, can be independently set higher to more liberally include fringe points in

clusters or lower to more conservatively classify them as noise, we follow the default recommendation

to set this equal to the minimum points per cluster mclSize.
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A.4 Clusters from ITP3

In Figure A.5, we create a figure similar to that of Figure 2.2, but for ITP3. In Figure A.6, we create

a figure similar to that of Figure 2.3(a), but for ITP3. Note that the run with mpts = 710 had a

DBCV score of 0.3885, which is slightly higher than the run at mpts = 580 with a DBCV score of

0.3862. However, because the di↵erences in DBCV were not great, we decided to use mpts = 580 to

reduce computation time as the clustering algorithm takes longer to run with higher values of mpts.

Figure A.5: Results from the clustering algorithm with mpts = 580 and ` = 25 dbar run on 678575
data points in the SP range 34.21–34.82 g/kg from all up-going ITP3 profiles. (a) The data in ⇥–SP

space with dashed lines of constant potential density anomaly (kg m�3) referenced to the surface.
(b) Profiles 313, 315, and 317 from ITP3 in a limited pressure range to show detail. Each profile
is o↵set in SP for clarity. (c) The spatial arrangement used as input for the algorithm where the
gray points are noise and each color-marker combination indicates a cluster. The same color-marker
combinations are used in each panel and the markers in panels (c) and (d) are at the cluster average
for each axis. (d) A subset of the data in ↵⇥–�SP space with the linear regression line and inverse
slope (RL) noted for each individual cluster and with dashed lines of slope ↵⇥/�SA = 1

A.5 Clusters across time for ITP2

In Figure A.7, we create a figure similar to that of Figure 2.4, but for ITP2.
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Figure A.6: A parameter sweep showing the number of clusters found (solid lines) and DBCV
(dashed lines) in ITP3 as a function of 72 di↵erent values of mpts with ` = 25 dbar.

A.6 Di↵erences from T08

Figure 6 from Timmermans et al. (2008) shows clusters in ↵⇥ � �SP space with panel (a) showing

five values of RL for ITP2, which range from -3.5 to -3.0, and panel (b) showing 12 values of RL for

ITP5, which range from -3.9 to -2.4. It is unclear whether their reported RL = �3.7 ± 0.9 applies

to data from ITP2, ITP5, both, or all six ITPs they included in their study. It is not explicitly

stated whether that value applies to just the clusters shown in that figure or it includes the dozens

of clusters they identified earlier in their study. T08 never explicitly state that they did not find a

trend in RL with respect to depth. However, given that T08 reported one overall value of RL and

that Bebieva & Timmermans (2019) (which extended the work of T08) show a constant value of RL

in the depth range we consider, we assume T08 also found a constant value of RL.

There are several factors that could explain why our results for RL di↵er from those of T08.

The fact that they used potential temperature ✓ while we worked with conservative temperature

⇥ is not relevant, since when we repeat our calculations using ✓ instead of ⇥, the values of RL we

find are negligibly di↵erent. It is unclear whether T08 calculated the values of ↵ and � for each

point or for each layer. We calculated ↵ and � for each point in each profile individually using

functions from the Gibbs Seawater (GSW) Oceanographic Toolbox, the Python implementation of

TEOS-10 (McDougall & Barker, 2011), while T08 used the McDougall (1987) algorithm coded by

Morgan (1994) as GSW was not yet released. This di↵erence in the calculation of ↵ and � may

conceivably explain why the clusters we show in Figure 2.2(d) are tilted several degrees compared

to those shown in Figure 6(a) from T08, and why the values of RL found here are all less negative

than corresponding values in Figure 6(a) of T08. The di↵erence in calculating ↵ and � may also

account for the shift in the ranges of �SP between the two figures. Both plots show a span in �SP

of 4.0 ⇥ 10�5, but our plot ranges from 2.6838 ⇥ 10�2 to 2.6878 ⇥ 10�2, while theirs ranges from

2.7002 ⇥ 10�2 to 2.7042 ⇥ 10�2. Because the clustering algorithm only considers ⇥0 and SP , any

di↵erence in calculating ↵ and � would not a↵ect the clusters we found, only the values of RL.
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Figure A.7: The average (a) pressure, (b) ⇥, and (c) SP for the points within each cluster for each
profile (profile cluster average, PCA) across time. The clustering algorithm was run with mpts = 170
and ` = 25 dbar on 53042 data points in the salinity range 34.05–34.75 g/kg from all up-going ITP2
profiles.
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A.7 Di↵erences from L22

L22 used 758 profiles from ITP3 while we used all 766 available up-going profiles. The reasons 8

profiles were not used was not stated, nor could we determine exactly which profiles they are. Based

on the gaps in Figure 3 of L22, we believe that the 8 missing up-going profiles are from July 2006.

We do not, however, believe that this di↵erence of 8 profiles accounts in any significant way for the

di↵erences between our results and those of L22.

Instead, we believe the reason our results di↵er from those of L22 has to do with the di↵erence

in the methods used to identify layers. Because the method used by L22 to delineate di↵erent layers

only considered salinity, they would not separate layers with temperature inversions. Remnant

intrusions are homogeneous in salinity but, compared to stair steps, are inverted in temperature

and have di↵erent patterns of heat and salt flux. They tend to be present near the bottom of the

staircase, which is indeed where we find the largest di↵erences between our results and those of L22.

A remnant intrusion’s pattern of a section of warmer water above a section of colder water is distinct

enough for the clustering algorithm to find two clusters. However, if only salinity is considered, as

L22 did, it would appear to be one regular staircase layer. Whether a remnant intrusion represents

one or multiple layers is subjective, and we do not claim that one method is superior to the other.

Here, in fact, it is the disagreement between these two methods is arguably the most interesting

point, because it indicates that a specific physical process is operating.

While we agree with L22 that salinity is the best measured quantity by which to identify the layers

of a staircase, it is still important to consider temperature. Another topic of future study would be

to adapt this method to automatically distinguish between well-mixed layers and intrusions.

A.8 Subsampling profiles

As the clustering algorithm does not consider profiles individually, only requiring su�cient numbers

of observations to be made within the same region and time period, it could potentially detect layers

in profiles that have too low resolution to resolve individual steps. While we did not conduct an

in-depth analysis, Figure A.8 shows clusterings of the ITP3 data where the profiles were subsampled.

We subsampled every profile to only every second, third, or fourth point and found similar clusters

to using all available data points in Figure A.5(c). Subsampling e↵ectively reduces the vertical

resolution and even though, especially in the case of using only every fourth point, the individual

steps are no longer well-resolved, the staircase layers are still found because across all the profiles,

a su�cient number of observations occurred within each layer. Note that we did not perform a

parameter sweep to find the ideal value of mpts for these clusterings, simply choosing a reasonable

estimation based upon the total number of data points left after subsampling.

We had originally investigated the e↵ects of subsampling in anticipation of applying HDB-

SCAN to data from the Arctic Ice Dynamics Joint Experiment (AIDJEX) during which hun-

dreds of hydrographic profiles were taken in the Canada Basin in 1975-1976. It is known that

staircase structures were observed in profiles from this experiment as shown in Figure A.9, repro-

duced from Bauer et al. (1980). The publicly available versions of these profiles can be found at

https://doi.org/10.34992/4xak-8r05. However, these have much lower vertical resolutions than the

example figure shows, varying around 1 measurement every 1–1.5 m.
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Figure A.8: Examples of clusterings when subsampling the ITP3 data to every (a,d) second, (b,e)
third, or (c,f) fourth point. The top row shows the resulting clusterings and the bottom row shows
a set of five example profiles to show the e↵ect of subsampling on individual profiles.

We found that the clustering algorithm still identified the majority of the same clusters when

subsampled down to even 1 in every 12 points (see Figure A.10) which gives an e↵ective resolution

much lower than 1.5 m. Therefore, we expected that the clustering algorithm should be able to

identify staircase layers in the AIDJEX data, despite the lower vertical resolution. However, the

available versions of the profiles from AIDJEX were not simply subsampled from the high-resolution

versions, an example of which is in Figure A.9. A smoothing process was applied to each profile and

therefore the signal of the staircase structures is not detectable.
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Figure A.9: A section of the temperature and salinity profile taken at Camp Snowbird, Station 1,
on 16 May 1975. The step structure can be observed, although distorted by an eddy. Reproduced
from Figure 20 of Bauer et al. (1980).

Figure A.10: Examples of clusterings when subsampling the ITP3 data to every (a,d) second, (b,e)
third, or (c,f) fourth point. The top row shows the resulting clusterings and the bottom row shows
a set of five example profiles to show the e↵ect of subsampling on individual profiles.
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Appendix B

Supplementary Materials for:

Tracking Beaufort Gyre staircase

layers across 17 years

This appendix contains supplemental figures and tables for Chapter 3.
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Compound Trend Value Units R2

dp(dtp) (1.62 ± 27.56) ⇥ 10�3 dbar/yr/dbar 0.007
dp(dtp) of residuals (�2.23 ± 0.60) ⇥ 10�2 dbar/yr/dbar �0.395
dp(dtSA) (2.48 ± 3.67) ⇥ 10�6 g/kg/yr/dbar 0.078
dp(dtSA) of residuals (1.74 ± 2.37) ⇥ 10�6 g/kg/yr/dbar 0.085
dp(dt⇥) (�2.52 ± 0.56) ⇥ 10�4 �C/yr/dbar �0.463
dp(dt⇥) of residuals (�2.29 ± 0.23) ⇥ 10�4 �C/yr/dbar �0.759
dp(dt�1) (1.93 ± 0.47) ⇥ 10�5 kg/m3/yr/dbar 0.431
dp(dt�1) of residuals (1.78 ± 0.24) ⇥ 10�5 kg/m3/yr/dbar 0.654
dSA(dtp) �4.55 ± 4627 dbar/yr/(g/kg) �1.14 ⇥ 10�4

dSA(dtp) of residuals �3.10 ± 1.04 dbar/yr/(g/kg) �0.328
dSA(dtSA) (4.29 ± 6.16) ⇥ 10�4 g/kg/yr/(g/kg) 0.081
dSA(dtSA) of residuals (2.44 ± 3.99) ⇥ 10�4 g/kg/yr/(g/kg) 0.071
dSA(dt⇥) (�5.23 ± 0.87) ⇥ 10�2 �C/yr/(g/kg) �0.572
dSA(dt⇥) of residuals (�3.99 ± 0.36) ⇥ 10�2 �C/yr/(g/kg) �0.789
dSA(dt�1) (3.92 ± 0.75) ⇥ 10�3 kg/m3/yr/(g/kg) 0.521
dSA(dt�1) of residuals (3.02 ± 0.40) ⇥ 10�3 kg/m3/yr/(g/kg) 0.660
d⇥(dtp) �0.23 ± 2.11 dbar/yr/�C �0.013
d⇥(dtp) of residuals �1.61 ± 0.47 dbar/yr/�C �0.373
d⇥(dtSA) (2.08 ± 2.81) ⇥ 10�4 g/kg/yr/�C 0.086
d⇥(dtSA) of residuals (1.23 ± 1.82) ⇥ 10�4 g/kg/yr/�C 0.078
d⇥(dt⇥) (�2.34 ± 0.40) ⇥ 10�2 �C/yr/�C �0.561
d⇥(dt⇥) of residuals (�1.86 ± 0.16) ⇥ 10�2 �C/yr/�C �0.805
d⇥(dt�1) (1.78 ± 0.34) ⇥ 10�3 kg/m3/yr/�C 0.517
d⇥(dt�1) of residuals (1.42 ± 0.18) ⇥ 10�3 kg/m3/yr/�C 0.682
d�1(dtp) 0.16 ± 7.34 dbar/yr/(kg/m3) 0.003
d�1(dtp) of residuals �4.72 ± 1.66 dbar/yr/(kg/m3) �0.314
d�1(dtSA) (6.68 ± 9.77) ⇥ 10�4 g/kg/yr/(kg/m3) 0.079
d�1(dtSA) of residuals (3.77 ± 6.33) ⇥ 10�4 g/kg/yr/(kg/m3) 0.069
d�1(dt⇥) (�8.30 ± 1.38) ⇥ 10�2 �C/yr/(kg/m3) �0.572
d�1(dt⇥) of residuals (�6.27 ± 0.58) ⇥ 10�2 �C/yr/(kg/m3) �0.782
d�1(dt�1) (6.20 ± 1.18) ⇥ 10�3 kg/m3/yr/(kg/m3) 0.520
d�1(dt�1) of residuals (4.72 ± 0.64) ⇥ 10�3 kg/m3/yr/(kg/m3) 0.652

Table B.1: The compound trends for each variable v across the cluster average of each variable
dv(dtv) for both the original variables and the residuals with the corresponding polyfit2d.
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Figure B.1: The dates on which profiles were taken within the BGR by each instrument in the time
period analyzed in this study. This shows only the up-going profiles which extend below 400 dbar.
Note that, while the same colors are used here as in the clustering plots, the colors for each ITP
are only to make them easier to distinguish and do not correspond to certain clusters with the same
color.
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Figure B.2: Maps showing, for each of the 15,247 profiles in the BGR, the (a) salinity and (b)
temperature of the LHW core as well as the (c) salinity and (d) temperature of the AW core. The
color bars are oriented such that values physically higher in the water column are closer to the top
of the plot. Similar plots for the pressure of the LHW and AW cores are in Figure 3.2.
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Figure B.3: The salinity across all time periods, colored by cluster, before relabeling to create
Figure 3.6. Noise points are marked in black. The blue and pink triangle markers denote the
values of the LHW and AW, respectively, for each profile. The vertical red dashed lines appear on
every August 15th to denote the boundary between time periods. The IDs for clusters in BGR0506
(BGR2122) are shown by the colored numbers on the left (right) of the plot.
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Figure B.4: The pressure across all time periods, colored by cluster. Noise points are marked in
black. The blue and pink triangle markers denote the values of the LHW and AW, respectively, for
each profile. The vertical red dashed lines appear on every August 15th to denote the boundary
between time periods. The IDs for clusters in BGR0506 (BGR2122) are shown by the colored
numbers on the left (right) of the plot.
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Figure B.5: The temperature across all time periods, colored by cluster. Noise points are marked
in black. The blue and pink triangle markers denote the values of the LHW and AW, respectively,
for each profile. The vertical red dashed lines appear on every August 15th to denote the boundary
between time periods. The IDs for clusters in BGR0506 (BGR2122) are shown by the colored
numbers on the left (right) of the plot.
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Figure B.6: The density anomaly, referenced to 1000 m, across all time periods, colored by cluster.
Noise points are marked in black. The blue and pink triangle markers denote the values of the LHW
and AW, respectively, for each profile. The vertical red dashed lines appear on every August 15th
to denote the boundary between time periods. The IDs for clusters in BGR0506 (BGR2122) are
shown by the colored numbers on the left (right) of the plot.
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Figure B.7: Maps of temperature for clusters 6, 23, 35, 52, 63, 69, 79, 90, and 96 over the corre-
sponding polyfit2d. The cluster number increases with depth and none of the clusters here are
outliers in IRSA or RL.
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Figure B.8: Trends in time of pressure for Cluster 63 both (a) before (R2 = 0.638) and (b) after
correcting with the polyfit2d (R2 = 0.632). The blue lines are the 30-day moving average. This
includes data from the 66,395 points within Cluster 63.

113



�2.5 0.0 2.5 5.0 7.5 10.0 12.5

(Pressure � polyfit2d)/year

34.2

34.4

34.6

34.8

35.0

C
lu

st
er

av
er

ag
e

of
S

A
(g

/k
g)

(a)

LHW

AW

�3.10 ± 1.04

�3 �2 �1 0 1 2 3

(SA � polyfit2d)/year ⇥10�3(b)

(2.44 ± 3.99) ⇥ 10�4

�2 �1 0 1 2 3

(� � polyfit2d)/year ⇥10�2(c)

(�3.99 ± 0.36) ⇥ 10�2

Figure B.9: For all clusters, the trends in time of the polyfit2d residual for (a) pressure, (b) salinity,
and (c) temperature with respect to the cluster average of salinity. This is similar to Figure 3.9,
but with each cluster marked with it’s ID and color. Blue and red circles denote clusters that are
outliers in IRSA and RL, respectively. All outliers were ignored when calculating the fit lines which
have (from left to right) R2 values of -0.328, 0.071, and -0.789. The blue and pink triangle markers
denote the values for the LHW and AW, respectively.

Figure B.10: The thicknesses (in dbar) of the detected layers. (a) The non-zero thickness values
against salinity of each cluster that is neither an outlier in IRSA nor RL for every profile in the
BGR, colored by cluster. For all clusters, the (a) cluster average of layer thickness and (b) trends
of percent change in layer thickness over time with respect to the cluster average of salinity. This
is similar to Figure 3.10, but with each cluster marked with it’s ID and color. The values in (c)
are calculated by taking the trend in time for the cluster’s non-zero thicknesses and dividing by
that cluster’s average thickness shown in (b), however are highly uncertain, see text for explanation.
Blue and red circles denote clusters that are outliers in IRSA and RL, respectively. All outliers were
ignored when calculating the fit lines which have R2 values of 0.609 for (b) and -0.041 for (c).
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Figure B.11: (a) The non-zero thicknesses (in dbar) of the detected layers for just ITP13 against
pressure for each cluster that is neither an outlier in IRSA nor RL. The linear trend has an R2 value
of 0.693. The red box denotes the domain bounds of the inset. (b) Reproduced from Shibley &
Timmermans (2019). The thickness of layers they detected for ITP13. The blue dots represent the
average depth and thickness for the data binned to 0.5-m increments and the linear fit line through
them has a slope of 0.12 ± 0.01 m/m.
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Figure B.12: The mean of the non-zero thicknesses (in dbar) per profile of the detected layers for
all clusters that are neither outliers in IRSA nor RL. (a) A map of these mean layer thicknesses per
profile on top of the polyfid2d. (b) A histogram of the mean layer thicknesses per profile.
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Figure B.13: The cluster average of each component of heat flux against salinity. (a) The cluster
average layer thickness. (b) The cluster average isobaric heat capacity A blue “+” and a red “⇥”
denote clusters that are outliers in IRSA and RL, respectively. All outliers were ignored when
calculating the fit lines which have R2 values of 0.609 for (a) and -0.107 for (b).
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Appendix C

Supplementary equations and

derivations

C.1 The Boussinesq Equations of Motion

The simulations in Chapter 4 are based upon the Boussinesq equations of motion which come from

taking the Boussinesq approximation on the Navier Stokes equations. However, many variations of

these particular equations exist. Therefore, I derive here the set of equations I use, starting from

the fundamental relations and making every assumption and approximation clear along the way.

The three fundamental relations for the system in question are the conservation of mass, the

conservation of momentum, and the thermodynamic equation. For each, I consider the properties

of a small fluid parcel, bounded by some arbitrary control volume.

C.1.1 Conservation of Momentum

While the conservation of momentum is commonly known as Newton’s second law, a = F/m, it

can be more generally expressed as

D~v

Dt
=

P ~F

⇢�V
=

X
~F ⇤ (C.1)

where D/Dt = @t + ~v · r is the material derivative (Sutherland, 2010; Cushman-Roisin & Beckers,

2011; Kundu et al., 2015; Vallis, 2017) and
P ~F ⇤ [N/kg] represents the sum of forces on the fluid

per unit mass ⇢�V [kg] (Sutherland, 2010; Cushman-Roisin & Beckers, 2011; Lautrup, 2011; Vallis,

2017). I use an asterisk superscript to denote quantities that are “per unit mass.” Note that (C.1)

actually represents multiple equations, one for each component in ~v, where usually ~v = (u, v, w). I

make the assumption that there are four relevant forces to consider in this system:

X
~F ⇤ = ~F ⇤

C
+ ~F ⇤

⌫
+ ~F ⇤

p
+ ~F ⇤

g
. (C.2)

where ~F ⇤
C

, ~F ⇤
⌫
, ~F ⇤

p
, and ~F ⇤

g
are the forces per unit mass due to Coriolis, viscosity, pressure, and

gravity, respectively (Sutherland, 2010).
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Forces

For a parcel of geophysical fluid on a rotating Earth, there is an apparent Coriolis force which arises

from taking a reference frame which is stationary with respect to the planet’s surface. The Coriolis

force per unit mass can be expressed as:

~F ⇤
C

= �2~⌦ ⇥ ~u = (fv, �fu, 0) (C.3)

where ~⌦ [rad/s] is the rotation rate of the Earth and f = 2⌦ sin� is the Coriolis parameter at

a latitude � (Sutherland, 2010; Vallis, 2017). If the scales of motion cover a su�ciently small

range of latitudes, approximately no larger than �� ⇡ 10�, then the Coriolis parameter can be

considered constant. This is known as the ‘f-plane’ approximation and, at midlatitudes, f0 ' 10�4

s�1 (Sutherland, 2010).

Viscosity can be thought of as the di↵usion of momentum with the tendency to bring a fluid to

a uniform velocity. A fast-moving fluid parcel is slowed by contact with an adjacent slow-moving

parcel and, similarly, the velocity of the flow-moving parcel is increased by contact with the fast

moving parcel (Sutherland, 2010). If we assume the stress of these parcels sliding past each other

in the x direction establishes a proportional velocity gradient, then the momentum flux in that

direction is

~F⌫x = �⌫⇢ru

where ⌫ [m2/s] is the kinematic viscosity (Sutherland, 2010). We take seawater to be a homogeneous

Newtonian fluid and assume that the viscosity does not change significantly over the relevant range

of temperatures, i.e. ⌫ is constant (Sutherland, 2010; Lautrup, 2011). We also assume an isotropic

fluid and so the momentum flux will have the same relation in the other directions for ~F⌫y and ~F⌫z

(Lautrup, 2011). Therefore, a non-zero divergence in the total momentum flux ~F⌫ will cause an

acceleration which means the viscous force per unit mass is (Sutherland, 2010; Vallis, 2017)

~F ⇤
⌫

= �1

⇢
r · ~F⌫ = ⌫r2~v. (C.4)

Pressure p [N/m2] is the normal force per unit area of the surface of a control volume d~S [m2],

so the pressure force per unit mass ~F ⇤
p

[N/kg] would be the pressure integrated over that surface

~F ⇤
p

=
�1

⇢�V

I

S

pd~S

where �V [m3] is the control volume and the negative sign orients the normal outward from the

control volume, insuring the force acts from high to low pressure (Sutherland, 2010; Vallis, 2017).

Applying the divergence theorem gives

~F ⇤
p

=
�1

⇢�V

Z

V

rpdV = �rp

⇢
. (C.5)

Note that this implicitly assumes that p is isotropic, having no dependence on direction. This

assumption will become explicitly valid when I later assume hydrostatic balance, making Pascal’s
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Law applicable (Lautrup, 2011).

I define gravity as acting in the downward z-direction, so the force per unit mass due to gravity
~F ⇤
g

[N/kg] would be

~F ⇤
g

= �gẑ. (C.6)

where g ' 9.80 m/s2 (Sutherland, 2010).

The Navier-Stokes Equation

Substituting for all the force terms (C.3), (C.4), (C.5), and (C.6) into equation (C.1) yields

D~v

Dt
= �(2~⌦) ⇥ ~v + ⌫r2~v � rp

⇢
� gẑ. (C.7)

This is one form of the Navier-Stokes equation (Sutherland, 2010; Lautrup, 2011; Vallis, 2017). We

can greatly simplify (C.7) by invoking hydrostatic balance and the Boussinesq approximation.

The Boussineq Approximation

The ocean varies very little in density, only changing by a few percent from the surface to the ocean

floor (Sutherland, 2010). Since most of the variation is in the vertical, it is convenient to subdivide

⇢ into a background density profile ⇢̄(z) and the density perturbations ⇢0(x, y, z, t) where ⇢ = ⇢̄+ ⇢0

with ⇢̄ � ⇢0. The same is true for pressure so we define p = p̄ + p0 where p̄(z) is the hydrostatically

balanced pressure, p0(x, y, z, t) are the pressure fluctuations, and with p̄ � p0 (Vallis, 2017).

When a fluid is at rest, ~v = 0, ⇢0 = 0, and p0 = 0 so the Navier-Stokes equation (C.7) becomes

rp̄

⇢̄
= �gẑ

and for geophysical fluids on a local scale, gravity acts in the vertical, meaning that the z direction

is the only non-zero component of the derivative (Lautrup, 2011) which gives

@z p̄ = �⇢̄gẑ, (C.8)

also known as hydrostatic balance (Vallis, 2017).

The Boussinesq approximation considers density variations to be negligible unless they a↵ect

buoyancy forces because g is relatively large (Vallis, 2017). This is a reasonable approximation for

the ocean because density variations are small, especially in horizontal directions (Sutherland, 2010),

We multiply (C.7) by ⇢ and, by taking the Boussinesq approximation, we neglect all terms with ⇢0

except for the one multiplying the buoyancy force:

⇢̄
D~v

Dt
= �⇢̄(2~⌦) ⇥ ~v + ⇢̄⌫r2~v � r(p̄ + p0) � (⇢̄+ ⇢0)gẑ (C.9)

where, because of hydrostatic balance (C.8) and the fact that p̄ only depends on z, the terms �rp̄

and �⇢̄gẑ cancel out.

Because of how little density varies in the ocean, we can further subdivide the background density

profile ⇢̄(z) = ⇢0 + ⇢̂(z), taking a constant reference density ⇢0 and a profile of background density
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variations ⇢̂(z) where ⇢0 � ⇢̂. Invoking the Boussinesq approximation again to neglect all terms

with ⇢0 or ⇢̄ except those related to buoyancy and dividing by ⇢0 gives:

D~v

Dt
= �(2~⌦) ⇥ ~v + ⌫r2~v � rp0

⇢0
+
⇢0

⇢0
gẑ. (C.10)

By defining specific pressure to be p⇤ = p0/⇢0 [m2 s�2] and buoyancy to be ~b = � ⇢
0

⇢0
gẑ [m/s2]

(Vallis, 2017), we can write the momentum equation as

D~v

Dt
= �(2~⌦) ⇥ ~v + ⌫r2~v � rp⇤ +~b (C.11)

C.1.2 Conservation of Mass

I express the conservation of mass as

@⇢

@t
+ r · (⇢~v) = 0, (C.12)

where ⇢ [kg/m3] is the fluid density, t [s] is time, and ~v [m/s] is the velocity field of the fluid. This

says that, for some fixed control volume, the change in mass of fluid inside needs to be equal to the

flow of fluid in or out (Sutherland, 2010). Or, as stated by Lautrup (2011), “It expresses the obvious

fact that the mass you gain while you eat equals the mass of the food you pass into your mouth.”

It is also known as the local equation of mass conservation or the equation of continuity.

Water is an e↵ectively incompressible fluid (Cushman-Roisin & Beckers, 2011). Using the sub-

divisions of density used earlier, ⇢(t, x, y, z) = ⇢0 + ⇢̂(z) + ⇢0(t, x, y, z) where ⇢0 � ⇢̂ � ⇢0. This

“e↵ective” incompressibility arises because ⇢ ⇡ ⇢0 and so can generally be assumed to have a con-

stant density. It cannot accumulate anywhere, that is, for a given control volume, equal amounts of

fluid must both enter and leave the boundaries for each unit of time (Lautrup, 2011). Therefore, the

mass within the control volume cannot change with time, @⇢/@t = 0, and conservation of mass is

now equivalent to a conservation of volume (Cushman-Roisin & Beckers, 2011). Using this in (C.12)

results in the local incompressibility condition

r · ~v = 0, (C.13)

which states that the divergence of the velocity vanishes for incompressible flow.

C.1.3 Thermodynamic Equation

The last fundamental relation, the thermodynamic equation, comes from the first law of ther-

modynamics. I express this as a conservation of internal energy

dEint = dW + dQ + dC (C.14)

which states that the change in internal energy dEint [J/s] of a parcel is equal to the sum of the

change in heat of the parcel dQ, the work done on the parcel dW , and the change in energy due to

its chemical composition dC (Vallis, 2017).

Work is defined as the product of the force times the displacement (Cushman-Roisin & Beckers,
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2011). In this case, the work done on the parcel is due to pressure, which itself is a force per unit

area, then W = pV [kg m2/s2] where V [m3] is a volume. Then, the change in work per unit mass is

dW ⇤ =
p

⇢2
@⇢

@t
. (C.15)

Because of the conservation of mass (C.12) and the incompressibity condition (C.13), dW 0 [m2/s3]

goes to zero, meaning that we neglect work when considering dEint for this system (Cushman-Roisin

& Beckers, 2011).

Assuming no internal sources of heat, the change in the heat of the parcel can only be due to

di↵usion and is given by Fourier’s heat equation

dQ =
kT
⇢

r2T

where kT [kg m/K s3] is the thermal conductivity and T [K] is temperature (Cushman-Roisin &

Beckers, 2011). The change in the heat of the parcel can also be thought of as the flow of temperature

and so dQ = Cv(DT/Dt), where Cv [m2/K s2] is the heat capacity at constant volume. Therefore,

I can express this relation as

DT

Dt
= Tr2T. (C.16)

by defining the thermal di↵usivity T = kT /(⇢Cv) [m2/s], (Lautrup, 2011; Kundu et al., 2015)

For seawater, I make the assumption that the change in the energy due to chemical composition

dC will be only due to variations in salinity. In an analogous manner to heat, that leads to the

following relation

DS

Dt
= Sr2S (C.17)

where S [g/kg] is salinity and S [m2/s] is the coe�cient of salt di↵usion (Cushman-Roisin & Beckers,

2011).

We have already assumed water is incompressible, and therefore the only two factors that a↵ect

density are temperature and salinity. For small fluctuations in both, the density of seawater can be

represented by the linear equation of state (1.1)

⇢ = ⇢0[1 � ↵(T � T0) + �(S � S0)] (C.18)

where ⇢0, T0, and S0 are some reference density, temperature, and salinity, respectively; ↵ [K�1] is

the thermal expansion coe�cient (Timmermans et al., 2008; Cushman-Roisin & Beckers, 2011), and

� [unitless] is the haline contraction coe�cient (Bebieva & Timmermans, 2019; van der Boog, Otto

Koetsier, et al., 2021). Taking the material derivative of (C.18) gives

D⇢

Dt
= �⇢0↵

DT

Dt
+ ⇢0�

DS

Dt
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Substituting (C.16) and (C.17) into that expression and then rearranging (C.18) to eliminate S gives

D⇢

Dt
= Sr2⇢� ⇢0↵Tr2T + ⇢0↵Sr2T

This expression simplifies greatly if we assume the di↵usivities for heat T and salinity S are

equal. As described in Section 1.1, the double-di↵usive process which allows thermohaline staircases

to form only takes place because these two di↵usivities are significantly di↵erent in magnitude,

T = 1.4 ⇥ 10�7m2/s, and S = 1.1 ⇥ 10�9m2/s (Shibley & Timmermans, 2019). However, for the

numerical experiments I present in Chapter 4, I assume the stratification is fixed in time and that

the processes that rely on the di↵erence between T and S are small in scale compared to the wave

motions I am interested in (Cushman-Roisin & Beckers, 2011). Therefore, I adopt the assumption

that T = S =  = 1.4 ⇥ 10�7 [m2/s], which leads to

D⇢

Dt
= r2⇢, (C.19)

the thermodynamic equation in terms of density (Winters et al., 2004; Lautrup, 2011). It may

seem that (C.19) is in direct conflict with the conservation of mass (C.12). However, by taking into

account the subtleties of water being nearly incompressible, this conflict is resolved by re-expressing

(C.19) in terms of buoyancy.

In Terms of Buoyancy

To resolve the apparent conflict between the thermodynamic equation (C.19) and the conservation

of mass (C.12), we start by expanding the material derivative in (C.19):

@t⇢ = r2⇢� ~v · r⇢ (C.20)

Next, as before, we subdivide ⇢ into the constant reference density, the background density

variations, and the density perturbations, ⇢(t, x, y, z) = ⇢0 + ⇢̂(z) + ⇢0(t, x, y, z):

@t (⇢0) = r2(⇢̂+ ⇢0) � ~v · r(⇢̂+ ⇢0) (C.21)

where, since ⇢0 is constant, it disappears from every term and since ⇢̂ does not depend on t, it is

absent from the left-hand side.

Then, we multiply by �g/⇢0 and substitute in buoyancy ~b = � ⇢
0

⇢0
gẑ [m/s2] where applicable

@t~b = � g

⇢0
@2
z
⇢̂+ r2~b + w

g

⇢0
@z ⇢̂� ~v · r~b. (C.22)

For the projects in Chapter 4, I will assume linear background density variations so @2
z
⇢̂ goes to zero.

We define the background stratification frequency N(z) [s�1] to be

N2(z) = � g

⇢0
@z ⇢̂. (C.23)

which is also sometimes called the Brunt-Väisälä frequency (Sutherland, 2010; Cushman-Roisin &
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Beckers, 2011; Kundu et al., 2015). Substituting this into (C.22) gives

@t~b + ~v · r~b = r2~b � N2(z)w, (C.24)

the thermodynamic equation in terms of buoyancy.

C.1.4 The Boussinesq Equations of Motion

Here, I bring together equations (C.11), (C.13), and (C.24) the Boussinesq equations of motion in

terms of buoyancy, valid in three dimensions:

D~v

Dt
= �(2~⌦) ⇥ ~v + ⌫r2~v � rp⇤ +~b (C.25a)

r · ~v = 0 (C.25b)

D~b

Dt
= r2~b � N2(z)w (C.25c)

where D/Dt = @t +~v ·r is the material derivative, ~v = (ux̂, vŷ, wẑ) is the velocity in [m/s], ~⌦ is the

rotation rate of the Earth in [rad/s], ⌫ is the kinematic viscosity in [m2/s], r2 = @2
x

+ @2
y

+ @2
z

is the

Laplacian, r = (@x, @y, @z) is the gradient, p⇤ = p0/⇢0 is the specific pressure in [m2/s2], ~b = � ⇢
0

⇢0
gẑ

is the buoyancy in [m/s2],  is the di↵usivity in [m2/s], and N2(z) is the background stratification

frequency in [s�2].

In terms of the streamfunction

Here, I show how I take the Boussinesq equations (C.25) and express them in terms of the stream-

function,  , resulting in the equation I employ for some of my numerical experiments in Chapter 4.

Assuming the amplitude of the waves is small enough such that the terms proportional to ampli-

tude squared (in this case, the nonlinear advection terms) can be neglected, the material derivatives

collapse to be just time derivatives, D/Dt ! @t. This is known as the small amplitude assumption

(Sutherland, 2010; Cushman-Roisin & Beckers, 2011). Here, I maintain the viscous terms in order

to compare to other studies t in Chapter 4. By assuming an isotropic fluid and taking the f -plane

assumption, there are no distinctions between horizontal directions. This allows me to always ori-

ent the x-axis along the horizontal direction of wave motion and assume a two-dimensional system

(Sutherland, 2010). Additionally, I take the length scale of my system to be small enough that the

Coriolis force is negligible (f = 0). This gives

@xu + @zw = 0 (C.26a)

@tb = �N2(z)w (C.26b)

@tu = ⌫(@2
x
u + @2

z
u) � @xp

⇤ (C.26c)

@tw = ⌫(@2
x
w + @2

z
w) � @zp

⇤ + b. (C.26d)

Because this flow is incompressible and restricted to two dimensions, I can define the stream-
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function  to be (u, w) = (�@z , @x ) (Sutherland, 2010). Substituting this into (C.26) gives:

�@x@z + @x@z = 0 (C.27a)

@tb = �N2(z)@x (C.27b)

�@t@z = ⌫(�@2
x
@z � @3

z
 ) � @xp

⇤ (C.27c)

@t@x = ⌫(@3
x
 + @x@

2
z
 ) � @zp

⇤ + b (C.27d)

where the continuity equation (C.27a) is automatically satisfied. Next, I apply @x to (C.27b), @t@z

to (C.27c), and @t@x to (C.27d):

@t@xb = �N2(z)@2
x
 (C.28a)

�@2
t
@2
z
 = �⌫@t(@2x@2z + @4

z
 ) � @t@x@zp

⇤ (C.28b)

@2
t
@2
x
 = ⌫@t(@

4
x
 + @2

x
@2
z
 ) � @t@x@zp

⇤ + @t@xb (C.28c)

Then, subtracting (C.28b) from (C.28c), I get

@2
t
(@2

x
 + @2

z
 ) = ⌫@t(@

4
x
 + 2@2

x
@2
z
 + @4

z
 ) + @t@xb (C.29)

where the pressure terms have cancelled out. Finally, to reduce the system to one equation, I

substitute (C.28a) for @t@xb:

@2
t
r2 = ⌫@tr4 � N2(z)@2

x
 (C.30)

where r4 = @4
x

+ 2@2
x
@2
z

+ @4
z

is the biharmonic operator, the square of the Laplacian (Ghaemsaidi

et al., 2016).

C.2 The Polarization Relation

In order to correctly force waves in my numerical experiments using the Boussinesq equations (C.25)

in two dimensions, I need the polarization relation between u, w, p⇤, and b. As with finding

the dispersion relation (4.5), I start by taking the standard plane wave assumption (4.4) which I

formulate here as

⌘(t, x, z) = ⌘0 exp [i(kxx + kzz � !t)], (C.31)

where kx and kz are the horizontal and vertical wavenumbers, ! is the frequency of the boundary

forcing, ⌘ represents any one of the variables u, w, p⇤, or b, and ⌘0 is an arbitrary coe�cient.

I then make the small amplitude assumption, that is, ⌘0 is small enough such that the nonlinear

terms, which scale with the amplitude squared, can be neglected, linearizing the equations of motion
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(Sutherland, 2010; Cushman-Roisin & Beckers, 2011):

@tu = �@xp⇤ (C.32a)

@tw = �@zp⇤ + b (C.32b)

@xu + @zw = 0 (C.32c)

@tb = �N2(z)w. (C.32d)

Similar to Section 4.2.2, the plane wave assumption causes the partial derivatives become

@t⌘ = �i!⌘, @x⌘ = ikx⌘, @z⌘ = ikz⌘

which can then be substituted in to (C.32) to give

�i!u = �ikxp
⇤ (C.33a)

�i!w = �ikzp
⇤ + b (C.33b)

ikxu + ikzw = 0 (C.33c)

�i!b = �N2(z)w. (C.33d)

Expanding (C.33d) with the plane waves assumption,

�i!b0 exp [i(kxx + kzz � !t)] = �N2(z)w0 exp [i(kxx + kzz � !t)]

and defining b0 = �Âg means that the coe�cient for the vertical velocity is

w0 = �Âg
i!

N2
.

Using this in (C.33c),

ikxu0 exp [i(kxx + kzz � !t)] � ikz
i!Âg

N2
exp [i(kxx + kzz � !t)] = 0

means that the coe�cient for the horizontal velocity is

u0 = Âg
i!kz
N2kx

.

Using that in (C.33a),

i!Âg
i!kz
N2kx

exp [i(kxx + kzz � !t)] = ikxp
⇤
0 exp [i(kxx + kzz � !t)]

means that the coe�cient for the pressure is

p⇤0 = Âg
i!2kz
N2k2

x

.

Expressing the plane wave assumption for all four variables with the above coe�cients and
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rewriting the complex exponentials using Euler’s formula gives

u = +Âg
i!kz
N2kx

[i sin (kxx + kzz � !t) + cos (kxx + kzz � !t)] (C.34a)

w = �Âg
i!

N2
[i sin (kxx + kzz � !t) + cos (kxx + kzz � !t)] (C.34b)

b = �Âg [i sin (kxx + kzz � !t) + cos (kxx + kzz � !t)] (C.34c)

p⇤ = +Âg
i!2kz
N2k2

x

[i sin (kxx + kzz � !t) + cos (kxx + kzz � !t)] . (C.34d)

Taking the real part of (C.34) gives the polarization relation

u = �Âg
!kz

N2kx
sin (kxx + kzz � !t) (C.35a)

w = +Âg
!

N2
sin (kxx + kzz � !t) (C.35b)

b = �Âg cos (kxx + kzz � !t) (C.35c)

p⇤ = �Âg
!2kz
N2k2

x

sin (kxx + kzz � !t). (C.35d)
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